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ABSTRACT

We consider the Fourier transform of a positive function f(-) (or

its sample Fourier transform) as a possibly complex covariance function

of a hypothetical stationary complex-valued time series. Ve model this

time series by an autoregressive process of order p whose spectral

density approximates (or estimates) the funition f(-) .

We show the equivalence of this int-rdretetion with the theory of

orthogonal polynomials on the unit circle; we study the consistency of

the autoregressive estimator as p increzse: with the sample size.

We also make an exploratory investigation of this new method as a

density estimation method following three approaches: the direct approach,

the hazard approach and the sparsity approach.
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SUMMARY

- What hAs been done:

In Part I, we look at the autoregressive method from the practi-

cal standpoint. Our aim is twofold:

- to find out how the autoregressive method behaves -n many

different situations, when the true answer is either known or unknown

- to compare the autoregressive method to other methods of

curve estimation currently used: the kernel method, the spline method,

the orthogonal series method and a quantile expansion method.

i!t is properly impossible to summarize this kind of work. One

can form one's opinion only by reading the text and looking at the

pictures we produced. Our opinion is that the method is very versatile;

it always yields a positive function; it is very easy to use and it

works well!

In Part II, we look at the autoregressive method from the

theoretical standpoint.

In Chapter 3, we unify the time series interpretation and the

orthogonal polynomial interpretation of the autoregressive method.

From the time series point of view, our treatment is slightly more

general than the current practice in that our autoregressive coeffi-

Aents are complex numbers.

Chapters 4 and 5 are parallel.
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In Chapter 4, we study the different modes of convergence of

the autoregressive -ethod, that is the autoregressive method as an

approximation method.

The weakest result is Theorem 4.1:

If
IT

0 < J f(x) dx <
-ir

0i < S Tr d
-Tf(x)

Tr

<<" j' log f(x) dx
-iT

then

ilin1 1I . f(x) dx 0
p--) -TT f(x) pW

and

lii T f(x) dx- 0

The strongest result is Theorem 4.3:

I(



if

condition (1) holds

0 < m ! f(x) < M , a.e. in [-TT,Tt]
(2)

f(o) = g(-) , a.e. in [-Tr,T]

g(-) e Lip (M,2) L >2

then

1 1
li~m f Wx ' 2 ,uni formly

p -1 am 2TTI IT(ex) 1

In Chapter 5, we prove thc consistency of the autoregressive

method as in Theorem 5.9:

3
If (2) holds and lim P--- - 0 , then

n

""-m -f W 2 0 in probability uniformly.n -+. cc p 2-r (eix )I'

Finally in Chapter 6, we apply these different results to the

problem of density estimation.

- What has to be done:

In the theory:

We have to find the asymptotic distribution of the autoregressive

estimator when we allow the order p to increase with the sample size at

a given rate. Berk (1974) has worked in this direction. We have

weakened some of his assumptions for the consistency of the autoregress-

ive coefficients (see section 5.2), but we haven't touched the otheýr
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problem.

Then will come the problem of finding global confidence bounds.

We also need a criterion to choose the order p

In the applications:

The mast important task here is probably to justify rigorously

the use of the autoregressive method in those cases where F(.) is

unbounded (see section 6.2).

We have not touched the problem of estimating the intensity

function of a counting process.
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INTRODUCTION

.n statistical analysis we are often interested in estimating

curves, probably because of the heavy emphasis on visual training in our

cultures. The curves are not always drawn b't they could be as, for

example, in regression analysis: now people more routinely take a look

at residual plots to judge the fit to the data provided by the regression

line (e.g., Tukey (1970), Feder (1974)).

Actually, there is increased interest in drawing the curves,

thanks to computer graphics. A few people ha' very imaginatively pro-

posed -td developed new ways of visualizing the data providing statisti-

cal scientists with aew means to gain insight into the data and to convey

these insights to their clients (e.g., Andrews (1972), Chernoff (1973),

Cleveland and Kleiner (1975)).

After a long domination of parametric techniques, 'e can now let

the data speak for itself. That is what the so-called non-parametric

techniques are attempting to do. There are al-eady several non-parametric

estimators of curves like probability density iunctions, hazard functions,

intensity functions,....

A universal requirement seems to be the smoothness of the estima-

tors. Indeed, smoothness allowa easy integration and differentiation,

when required. Estimators should also belong to the class of functions

they are Zrying to estimate. Finally the methods of estimation should

be easy to use.

We review briefly the general methods that have appeared in the

literature; then we expose the new autoregressive method.



But first a word on the notation. We will stick to the following

conventions:

- a function g(.) is approximated by a function gm(.) ,

where m denotes the order of approximation;
A

- an approximator g m(.) is estimated by a function gm(.) ;

- a function g(.) is estimated directly from a sample by a

function gn(.) , where n denotes the sample size.

Also, in the appendix to this chapter one will find a glossary of the

terms that are followed in the text by an asterisk.
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0.1 The Kernel Method

The kernel method was introduced and developed by Rosenblatt (1956)

and Parzen (1962). It gives a general way of estimating derivatives of

functions by smoothing the first differences of a crude estimator of

these functions (usually a step function), using a weight function

called a kernel.

Let f(s) - F'(-) . Suppose F(e) has been estimated at n

points xl,...,x n (the data points) by Fn(*) . Then f(.) is estimated

by fn(e) :

f (X) M Ej1 [rlj + 0) n (j -0)}
n J-F h x h°•- 0-

where - K(.) , the kernel.and (h.1 are chosen appropriately

- Fn (x + 0) - F(x - 0) is the value of the jump of

F (*) at xj .

Parzen and Rosenblatt were interested in estimating a probability

density function (*). Then Watson and Leadbetter (1964) applied

indirectly the same technique to hazard functions (*). It could also

be used for estimating sparsity function (*) or intensity functions (*)

of counting processes; these applications have not been studied yet.

(2



0.2 The Quantile Expansion Method

This method is due to G. P. Sillitto (1969, 1971). It has to do

with estimating the quantile function (*), using shifted Legendre ortho-

gonal polynomials. Fxom the derivative of the quantile function, the

sparsity function, one can easily get the density function.

Let F(.) be a strictly.increasing continuous distribution

function (*), and Q(9) the associated quantile function.

Let q(.) = Q'(.) and f(.) = F'(*) . Then

f W) 1 and q(t)fif--) q(F(x)) f(Q(t))

The qvantile function is estimated by

m

%m(t) E = (2j - 1) XP P 1 (t)

where - * is the shifted (to (0,11) Legendre polynomial of

J-1

degree (j - 1)
A

-- Xj is a linear combinat.ion of the order statistics.

P.

One then computes qm(-) and estimates f(-) by f 1o(-)

A(t -

f m • ,t)
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0.3 The Spline Method

In the practice of density estimation, there seems to be differenL

approaches placed in thi.s category, Boneva, Kendall and Stefanov's

method (1971) is really a variant of the kernel method where the chosen

kernel, called a deltaspline, satisfies certain extremal properties

arrived at through an original application of the theory if splines.

IHore properly (as to the classification), one can smooth the

e-mpirical quantile function or the empirical distribution function using

spline functions and tten differentiate these smooth versions, as in

Wahba (1971).

A general description of this second approach runs as follows:
k

given an ordered set of knots [xi.i , a corresponding set of estimated

functional values yi]i=1 , find a real-valued function F(.) such that

F(xi) = Yi i = 1,...,k

and other appropriate conditions are satisfied. These other conditions

define the class of spline functions to be used, e.g., cubic splines,

splines under tension,

We have considered splines under tension where the extra condition

is that given C > 0 (the tension factor), F"(-) - o 2F(.) varies

linearly on cach of the intervals [xi, xi+l , i - 1,...,k -I

This description was borrcwed from Cline (1974). The imposed

linearity condition allows estimation of the tyiki= by least-squares

method.



0.4 The Weighted Fourier Series Method

Let f(e) be nonnegative and defined on [-rr,rr] Then

MI ivxcp(v) i j e f(x) dx is determined by its value at v 0,1,2,...
-Tr

Now if f(s) is square-integrable (*), we have the following inversion

formula:

1 -v

L(x) E e-ivx C(v)

If f(o) is unknown, we can estimate cp(v) by qCn(v) =f eIT"dFn(x),
-IT

where Fn(*) is an estimator of the cumulative of f(s) , and then

invert a weighted version of pn(*) to get f n

f (x) e- VXw(v) cp(v)
n 2rr

where w(v) goes to 0 as IvI gets large. Watson (1969) has deter-

mined that the optimal weights are

w(v) = 2 (v) 2

CP(v)1 +n (1 -I C(v)12)

Some have used 0 - 1 weights (e.g., Kronmal and Tarter (1968)).

Thaler (1974) has modeled the optimal weights from the sample.

Another approach that we favor is to use truncation along with

estimated optimal weights:

m ivx
f m(x) E e wn(V) CP -v)

v=_ -m
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0.5 The Autoregressive Method

We now ccme to the main object of this dissertation. The auto-

regressive method got its name from time series analysis.

Let F(e) be a bounded nondecreasing function defined on

(-rr,Tr] . Let R(.) be the Fourier-Stieltjes transform of F(.) ,

R(v) = f e dF(x) , IvI = 0,1,2,...
-TT

Solve the following system (Yule-Walker equations)

: R(O) R(1) R(m - 1) al, R(-1l

R(-0) R(O) . . . R(m- 2) RRm R(-2)

R(-m+l) R(-m+2) ... R(0) R(-m)

th

This can be seen either as fitting an m order autoregressive

scheme (*) from the Yule-Walker equations involviug a complex stationary

covariance function R(e) , or as building a set of orthogonal polynomials

on the unit circle, with basis the complex exponentials and inner product

defined by

(g,h) = S g(eix) h'eix'- ) d F(x)
-IT

The autoregressive approximator f m(.) is given by

Km

' . .. + 1'" ++

C m 2r. .... . . .. + +c



and is such that

,ii

,f ei f () dx R(v) , 0v 1 = , m
-Tr

Thus f (O) is approximating dFO in a certain way.m dx

The autoregressive estimator is obtained in the same way, except

that R(-) has to be estimated first by Rn (.)

17
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Appendix

O.A.l Glossary of Terms

I - A distribution function F(.) is a nondecreasing function continu-

ous from the right and such that lir F(x)= 0 and lir F(X) =1.
X4 -OX, C

We will usually consider that F(.) is absolutely continuous with

respect to Lebesgue measure, i.e., we will assume the existence of

a function f(.) , called a density function, such that
x

F(x) j f(u) du . Then, f(-) - F'(*) a.e. Sometimes, we

assume that f(.) is square integrable, i.e. I jf(u)j 2 du <

-00

2 - Suppose that the distribution function F(-) is strictly increasing

and absolutely continuous. Then we can define the functional in-

verse of F(*) , denoted Q(9) , called the quantile fPmction. Q(*)

is defined on [0,] and if t = F(x) , then Q(t) = x . Under

the preceding conditions, there exists a function q(*) , called

the sparsity function, such that q(.) Q'(*) . Now if we let

f.-) = F'(-) , we will have the following relations:

f(x) (F(x)) End q(t) - I
qf(Q~t))

Tukey may have been the first one to use the term "sparsity."

3 - Now let F(.) be an absolutely continuous distribution function

defined on [Ow) . The hazard function (,) is defined as

h(x) =-d log( F(x))
dx o - F(x)

t(



It is interpreted as an instantaneous failure rate

limr P(x < T ! x + dx! T > x) = h(x)
dx -, 0 dx

where T is a random variable with distribution F(o)

4 - For a counting process N(t) , we can define the concept of an

intensity function %(.) as

dt
X(t) = • E-[N(t)]

where E[*] denotes the expectation of a random variable.

th
5 - An m order aut-regressive scheme is a stochastic process satis-

fying the following difference equation

X(t) + alrX(t- 1) + ... +a 1 mX(t-m) = e(t)

where the e(.) t are uncorrelated.

(
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W.en one is presented with a new and radically different way of

doing something for which there exists already quite a few techniques,

one Ls naturally cautious. There is a natural principle of economy that

needs to be respected before one may yield his approval. In the next

two chapters we try to demonstrate in the most practical way that the

autoregressive method deserves to become a standard technique of non-

parametric curve estimation.

In the genesis of this work, the contents of these first two

chapters opened the way to several questions to which much attention

will be devoted in the second part. Also, in all fairness tc the com-

peting techuioues, we include some practical suggestions that make them

perform better.



CHAPTER 1

APPROXIMATING DENSITIES AND HAZARD FUNCTIONS

- - --



Most of the time, people use simulation to validate a new method.

in the words of Boneva, Kendall and Stefanov (1971., p. 1): "We have for

the present worked chiefly with simulated material for the excellent

reason that what is essentially a diagnostic aid is most severely tested

when one knows what the answer should be." In simulation, the answer is

not exactly known. As a matter of fact, the sampling variability of the

simulation process can yield "bad" samples. Should we feel free to

sample until we get the "right" answer? This liberty is not available

in the real data case. What can we do?

It depends on what the method can do. If the method can be used

in a non-stochastic context, then it is possible to validate it without

reference to sampling fluctuations. We call this process a first-hand

validation. If the method is inseparable from the stochastic context,

we may obtain consensus validation by comparing it to other methods

on the same data. This is referred to as second-hand validation.

Consider the kernel method for instance. A first-hand validation

would require n exact F(9) values. This would not be a very inform-

ative validation since we know that if n is large enough, even linear

interpolation would give us a good fit for the derivative. The same can

be said of the spline method.

In the autoregressive method, a first-hand validation requires

knowledge of the true R(e) sequence. How many elements of the sequence

do we need to get an approximator f (m) close enough to f(.) ? Now

!m



this question remains meaningful in the real data case because the

sample si-e n does not compel us to choose any order m . So any

insight we gain from the validation process becomes handy when we are

confronted with real data. The same can be said of weighted Fourter

series.

Another reason to go through this process has to do with the

structure of the estimation problem. Suppose we want to estimate a

function f(e) and f(-) can be expressed in a form suitable for

approximation by functions (f . We might then estimate f (

A

by fm () . Now we have that

i1

If f M(.) fm..)+ fm.
2= (~)- I' + m-'j

The validation process can be of much help in the study and control c f

the bias function b (*) :

bm (o) = f(') - • ()

In this chapter the emphasis is on validating the autoregressive

method, though we will make some comparisons with the weighted Fourier

series method.

In the probability density case, the function R(o) is simply

the characteristic function. Accordingly we shall adopt the more usual

notation cp(o) in the ensuing discussion.

i(
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1.i The Idea of Truncating

A natural choice to start with is the Cauchy density

f(x) - i 1 I. I
IT (I +x ) TT 1 + ix)2

with characteristic function cp(v) = e-lVl , as our approximators are

of the form

K
m m

11 + E j elj

J =1

Figure 1 reproduces the first picture we obtained. Obviously

something had gone wrong. But then, our approximators are only defined

on [-rr,T] : more precisely they are periodic with period 2u ; and

the interval [-TT,T-] contains only about 807. of the Cauchy distribution.

Moreover, even though the truncated density fT(e) is proportional to

the complete density f(,) on the interval of truncation T , it is

zero outside that interval. That is

f(x) ,x E T

fT(X) = {Tf(u) du

Thus the Fourier transform of f T C( , is not proportional to

the Fourier transform of f(.) ,CP(.)
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Let T be the interval [-rT] . When f(o) is known, we can

evaluate CPT(*) directly using the Fast Fourier transform technique.

If only cp(.) is known and is integrable, then

PT(V) cpw) sin TT(uj - v) d

where

X7I 1 CP Sin Tw d

Using this correction, we produced Fig. 2 and 3 that show a

remarkable fit. The distortion is not as important when most of the

area is contained in the interval T

What happens when the density is defined only on a subinterval

of [-rT,rT] ? Consider for example the uniform density on E-1,1] with

characteristic function cp(v) - sin_ v . Figure 4 shows a wild behavior
V

that is corrected only when the uniform density is made to fill the

whole interval [-Tr,rT] as then cp(O) = 1 and cp(v) = 0 , v $ 0 ,

which yields f (-) -1 for all values of m.

Note: The symbol o represents the true curve and the solid line

the fitted one, unless otherwise noted.
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1.2 The Idea of Averaging

The wild behavior depicted in Figure 4 is more or less typical.

This effect wears off quite rapidly in certain cases, but in others it

persists. This difference in behavior is intriguing. Let us see the

evidence.

Consider the standard Gaussian density. Why pay much attention

to the low order approximators (Fig. 5 and 6) as convergence is still

taking place (Fig. 7)? We could disregard this as an amusing oddity that

unimodality and bimodality alternate. But when we shift the density by

P. small amount to a N(O.5,1) , the oddity becomes alarming because it

persists and is aggravated (Fig. 8 and 9).

Now let us superimpose these pictures (Fig. 10 and 11). We get

the remarkable fact that successive orders complement each other, so that

if we average them (Fig. 12), the bias is greatly reduced.

This is not a problem of stability of the algorithm used, as the

phenomenon is observed both with real and complex characteristic func-

tions. More likely, this is related to the very structure of the

approximator. We will have to examine this in Part II iL our study of

the bias function.
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1.3 The Idea of Symmetrizing

The next important class of functions to be used in our valida-

tion study is the class of gamma densities (exponential, chi-square, ... )

The exponential density, with its discontinuity at the origin,

was expected to be difficult to approximate mainly because the approxima-

tors are periodic (f m(-'T) = f m(TT)) . Figures 13 and 14 illustrate

our fears. One way to compensate the basic disequilibriumi of the tails

4,is to symmetrize the density so that both tails are equal.

We would like to point out that symmetry is not what matters but

rather that the tails be comparable, as otr approximation of non-central

Gaussian densities show (Fig. 12).

By syuunetrizing the exponential density, we get the Laplace (or

double-exponential) density, and the discontinuity at the origin is now

shifted down to the first derivative. In Figure 15 "e see that the

peak has been somewhat smoothed, but the fit is really gooc. The right

half gives us a nice exponential curve.

The chi-square densities with larger degrees of freedoa do not

present any discontinuity, but their left and right-hand tails are very

different. We shall compare symmetrization to scaling.

Let Y be a random variable distributed as a rhi-square -ith

four degrees of freedom. Let X M.5Y . The density of is

f(x) = xe-x

I(



We symmetrize it to f (x) = 0.5 jxj . Let us examine the

results.

By comparing Figures 16 and 17, we see that symmetrization pro-

duces a smoother approximator than non-symmetrization for a given order.

The same holds true after averaging two consecutive orders (Fig. 19

and 20). But when we symmetrize, we usually have to go to higher orders

to get a better fit (Fig. 18). It is also possible to average more

orders to get better results (compare Fig. 21 with Fig. 19).

Let us now look at the density of X = 0.25Y , i.e.,

f(x) = 4xe -2x. The right extremity is at about the same height as

4• the left. The approximators now perform well at both tails (Fig. 22),

illustrating that symmetrization is not what we really need when the

mode is more centrally locatea.

Note that symmetrization here is not taken in the same sense as

in Feller (1966). The difference is apparent at the characteristic

function level. Feller's procedure transforms the characteristic

function into its square modulus. Our procedure transforms it into

its real part.

_____________
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1.4 Comparison with the Weighted Fourier Series Method

We first note that, in the case of validation, the weighted

Fourier series method uses only 0 - I weights, i.e., the density is

approximated by successive truncated Fourier series. This method

requires as in the autoregressive method, that we truncate the density

to [-J,TT] . We also note tnat this is the standard way to invert a

known Fourier transform. Thus, it should perform rather well.

For the Cauchy density, there is almost no difference between

the two methods (Fig. 23 and 24 compared to Fig. 2 and 3). But in the

case of the triangular density on [-rr,rr] , the autoregressive approxi-

mator wobbles about the true density (Fig. 25); averaging orders 8 and

9 reduces the bias pretty much (Fig. 26). But the truncated Fourier

series is right on the target (Fig. 27).

In the exponential case, we notice the same "odd-even" effect

(Fig. 28 and 29). But there are differences: both tails are badly

approximated (compared with Fig. 14) and the approximators become nega-

tive. Symnetrizing improves the matter (Fig. 30) as in the autoregressive

method (Fig. 15).

!I
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1.5 Approximation of a Hazard Function

When R(e) is taken as the Fourier transform of log (I - F(e))-I

the autoregressive method produces approximators of the hazard function

related to the distribution F(e) . In view of our previous work, we

did not feel that it was necessary to include more than one example,

which we have taken to be the hazard function of a truncated exponen-

tial (Fig. 31 and 32).

From the hazard function, it is possible to recover the original

density as follows:

x
f(x) = h(x) exp(-I h(u) du)

0

When we apply this transformation to our hazard approximators, we obtain

the density approximators represented in Figures 33 and 34. (Note we

modified the hazard approximators at the origin to be 1.)
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1.6 The Chi-square case revisited

The chi-square densities having shown to be more difficult to

approximate, they furnish a valid testing ground for some alternate

representations of the densities. We have already mentioned the hazard

representation and the excellent results it produced for the exponential.

In th0 chi-square case we obtain Figures 35 and 36 . The results are

not so good.

There is another representation that has not been used very

often, namely the sparsity representation mentioned in the Appendix O.A.1

(item 2). The pictures we obtain (Fig. 37 and 38) compare favorably to

direct approximators of higher order (e.g., Fig. 20).
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1.7 A Lojk at the Output Parameters

We have left aside up tc now all numerical considerations. To

draw all the information contained in our validation work, there only

remains to ccnsider the output parameters that define our approximators:

the coefficients (a.Im and the proportionality factor K that
jm j=l in

normalizes the approximator to integrate to R(0) .

We consider only four cases to illustrate the points we want to

inze.

Table 1.1 exhibits the relation between the parameters and the

kind of picture we get. K and the coefficients [aM_ are con-

verging nicely, the same way fM (o) approximates the Cauchy density

(Fig. 2 and 3).

Table 1.1 Some parameters of the Cauchy density autoregressive
approximator

Order Coefficients Scale Factor

1 -0.4838 - 0.7658

2 -0.5310 0.0974 0.7586

3 -0.5346 0.1175 0.7575

4 -0.5354 0.1198 0.7572

5 -0.5356 O.1203 0.7571

11 -0.5358 0.1207 0.7570

- l~U I nnn m1n m



When K goes to 0 , the coefficients do not converge, as in

4m
Table 1.2. There is also the danger that K will become negative, in

which case the approximator fm () is negative over the whole domain

[-TT,TTr . Figure 4 is typical of the kind of picture associated with

this behavior.

TaBle 1.2 Some parameters of the Uniform (-1,1) density

autoregressive approximator

Order Coefficients Scale Factor

m mK

1 -0.8414 
0.2919

2 -1.5719 0.8681 0.0719

3 -2.3304 2.2415 0.0170

11 -8.4770 34.5193 1.39 x 10

Table 1.3 exemplifies slow convergence. In such a case we have

found it helpful to average consecutive orders. The related pictures

are shown in Figure.: 7, 8, 11 and 12.

iC
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Table 1.3 Some parameters of the Normal (0.5, 1) density
autoregressive approximator

Order Coefficients Scale Factor

mai a2m im

1 (-0.5414,0.2936) 0.6205

2 (-0.7592,0.4069) (0.2230,-0.3302) 0.5220

3 (-0.8596,0.4538) (0.3679,-0.5211) 0.4816

9 (-1.0079,0.4961) (0.6383,-0.7415) 0.4245

10 (-1.0152,0.4966) (0.65351-0.7471) 0.4218

11 (-1.0210,0.4969) (0.6656,-0.7511) 0.4196

From Tables 1.4 and 1.5, there does not seem to be differences

in convergence; this reaffirms our finding that there is no real gain

in symmetrlzing when the mode is relatively central. This is in sharp

contrast with the exponential and Laplace cases in Tables 1.6 and 1.7.



Table 1.4 Some parameters of the 0.5 Chi-square (4) density
autoregressive approximator

Order Coefficients Scale Factor

m

1 (-0.1860,-0.1224) 0.9503

2 (-0.2111,-0.1173) (0.1069,0.0426) 0.9377

3 (-0.2207,-0.1155) (0.126&,0.0369) 0.9310

10 (-0.2461,-0.1142) (0.1614,0.0347) 0.9097

11 (-0.2482,-0.1143) (0.1642,0.0350) 0.9078

Table 1.5 Some parameters of the synmietrized Chi-square (4) density
autoregressive approximator

Order Coefficients Scale Factor
m 0nm a:n K m

1 -0.0950 0.9909

2 -0.1138 0.1970 0.9524

3 -0.1065 0.1928 0.9511

18 -0.0854 0.2432 0.9162

29 -0.0837 0.2449 0.9140

(
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fable 1.6 Some parameters of the exponential density
autoregressive approximator

Order Coefficients Scale Factor
M M m K

1 (0.4998,-0.5001) 0.4999

2 (0.3997,-0.8001) (-0.4001,-0.1997) 0.3999

3 (0.2996,-0.9001) (-0.6000, 0.0004) 0.3599

13 (0.0782,-0.9936) (-0.5703, 0.4086) 0.2936

14 (0.0735,-0.9943) (-0.5664, 0.4149) 0.2923

Table 1.7 Some parameters of the Laplace (symmetrized exponential)
density autoregressive approximator

Order Coefficients Scale Factor
m aim a2m Km

1 -0.5456 0.7023

2 -0.6209 0.1381 0.6889

3 -0.6331 0.1928 0.6835

10 -0.6370 04027 0.6820

11 -0.6370 0.2028 0.6820

II-.300.08062



1.8 Conclusion

1. It is important to realize that the autoregressive method approxi-

mates only functions truncated to [-rr,r] and that the domain of defini-

tion of these functions should fill the whole interval.

2. There seems to be a structural "odd-even" effect that can be

averaged out.

3. Syu-,etrizing improves the behavior of the approximators when the

functions have a maximum at the left end of the domain.

"4. In view of the periodicity of the approazimators, they perform better

when both ends of the functions are comparable.

5. Satisfying approximators are related to the convergence of the

parameters.

(



APPENDIX

i.A.I Sample Programs for Approximation

We include in this appendix three sample programs, one for each

of the approaches we used.

Each program is divided in 3 parts:

I - Computing the R(e) sequence

II - Solving the Yule-Walker equations in AUTOREG. This subroutine

can be found in the appendix to Chapter 3.

III - Computing the density.

In the direct approach, II and III are confounded.

ist program: Approximating a symmetrized chi-square.

At the beginning, A(-) contains the function to be approxi-

mated. Then, using two IMSL subroutines FFT2 and FFRDR2, we compute

the R(-) sequence that is stored in A(-) . This is the end of

Part I.

In Part II, we solve the Yule-Walker equations and compute the

approximator stored in F(*) . NORM(-) contains the true truncated

density being approximated (NORM(e) is used only for plotting purposes).

We also average four consecutive orders, the average being stored in

G(.

!!f



2nd program: Approximating the hazard of a chi-square.

The first two parts are as in the first program. At the end of

Part II, F(-) contains the approximated hazard.

In Part III we reconstitute the density from the hazard function.

At the end of Part III, F(e) contair.s the approximated density.

3rd program: Approximating the sparsity of a chi-square.

In Part I, G(-) contains the chi-square density and CF(-) is

the quantile function obtained by the trapezoidal rule. Then, we

rescale CF(.) to be between -Tr and TT , using subroutines CENTER

and KSCALE , and compute in FOURST I the R(-) sequence stored in

A(*)

R(v) = T" dx = P" e+
-IT -IT

by letting t = 2n.F(x) - TT

In Part II, we solve the Yule-Walker equations. F(-) now con-

tains the sparsity.

Finally in Part III, we recover the density. Subroutine

FOURSTI simply evaluates

n ivX(j) 1 2 MeL
E e F(J) 1v ,

J=lLLL



using the function CSREC , which is a recursion for cosines and sines:

FUNCTION CSREC(CI,C2,C3)

CSREC = Cl *C2 - C3

C3 = C2

C2 = CSREC

RETURIN

END

.4"
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CHAPTER 2

4EN"

ESTIMATING DENSITIES AND HAZARD FUNCETIONS



The kind of validation that we have completed in chapter 1 is

not sufficient for a method that is to be used in a statistical context.

We have to confront it with real data. This testing can best be done

by what was called before a second-hand validation.

Even though our main interest remains with the autoregressive

method, we will have to take a longer look at the competing techniques

that we mentioned in our introduction, examining critically different

more or less inaccurate maps to recognize the ground we are standing on.

We do not define with any more precision the -tasks that these methods

could be asked to perform. It will suffice for the moment to see how

they describe the data. This is admittedly an incomplete assessment

from which we shall not try to state definitive answers.

This critical examination will be ione using a diversity of real

data situations; approximately normal data, approximately exponential

data and frequency data. But first we indicate how we have used the

different methods.



2.1 Choice of Input Parameters

2.1.1 The Kernel Method

The k,.rnel method contains two input parameters, namely the
t n = o ba d i t s

kernel function and the set h of bandwidths.

Wa have used different kernels: Parzen kernel (Fig. 1, 2, 18, 30),

Gaussian kernel (Fig. 3), naive kernel (Fig. 4). It is clear that the

choice of a kernel is an important one. rhe Parzen or Gaussian kernels

will produce in general smoother estimators.

We have always used constant bandwidths h h , even though

there are algorithms of the nearest neighbor -ype to adapt the h.'s toJ

each data point, following Loftsgaarden and Quesenberry (1965).

For the particular kernels we used, the optimal value of h is

given by

hK 2(y) dy
opt 4n[f"(x) j J'y 2 K(y) dy] 2

[f(x)]1
1 5  rKERFAC 1/5

12 f "(x)]2/5- n

(Parzen (1962))

We have approximated this by

K & STDEV K A1



where STDEV is the standard deviation of the sample. The proportion-

ality constant K , if it is too large, yie.ds very flat estimators, and

if too small, very spiky. A value around 2/3 has worked very well.

Note also that STDEV is very sensitive to outliers so that adjustments

may have to be made.

2.1.2 The Quantile Expansion Method.

The only parameter here is the order of approximation. So we

use the method iteratively, until we are satisfied.

2.1.3 The Spline Method.

We have usually fitted splines under tension to the empirical

quantile function. The input parameters include the tension factor, the

set cf knots (xi.i=I and the end-point conditions.

The choice of the knot points is very delicate and crucial. We

usually started with 13 equidistant knots between 0 and 1 . Then

we moved them around and reduced their number according to the pictures

we were getting. This procedure is necessary when the estimated quan-

tile function starts to decrease, contrary to the theory,

When the tension factcr is less than .001 , the spline under

tension is very much like the cubic spline; for values larger than 50 ,

it is a polygonal line.

The end-point corditions consist in this case of estimates of

the first derivative of the quantile function at both ends, usually

first differences.



2.1.4 The Weighted Fourier Series Method.

The input parameters here are the empirical Fourier transform,

the weights and the order of approximation.

So again we use the method iteratively and estimate the optimal

weights by using the empirical Fourier transform cn(.) . Thaler (1974)

has shown that for large v , n (v) is not a good estimate of CP(v)

in the sense that

lir Var CP(v) =v1 n

But this should not cause us to worry as we usually need only small val-

ues of v , and we can check graphically (Fig. 9) that we are in a safe

part of the domain by finding the value v0 at which jCPn(v)I2 starts

oscillating around 1/n .

This procedure is simpler than Thaler~s own proposal and it also

performs better.

2.1.5 The Autoregressive Method.

The autoregressive method has the same kind of parameters as

the weighted Fourier series method, minus the weights.

The Fourier transform R(e) is estimated by R. n() from the

sample. Not only is the method used iteratively, but there is a recur-

sive algorithm to go from one order to the next (see appendix 3.A.l).

(1



2.2 Buffalo Snowfall Data

This set of data has been much studied in our department, more

from the time series point of view. It consists of the 63 yearly values

of snow precipitation, recorded to the nearest tenth of an inch, from

1910 to 1972. It was chosen to illustrate the response of the different

methods to approximately normal data (see Fig. Al and A2).

Table A
Buffalo Snowfall Data

Year 0 1 2 3 4 5 6 7 8 9

1910 126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25.0

1920 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6 80.7 60.3

1930 79.0 74.4 49.6 54.7 71.8 49.1 103.9 51.6 82.4 83.6

1940 77.8 79.3 89.6 85.5 58.0 120.7 110.5 65.4 39.9 40.1

1950 88.7 71.4 83.0 55.9 89.9 84.8 105.2 113.7 124.7 114.5

1960 115.6 102.4 101.4 89.8 71.5 70.9 98.3 55.5 66.1 78.4

1970 120.5 97.0 110.0

(.
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2.2.1 The Kernel Method

We experiment first with different values of h . Figure 1

shows the effect of choosing h too large (h = 27.75) in comparison

with Figure 2 (h = 18.5) , where the kernel used is the Parzen kernel.

Now we can compare the Gaussian kernel with the Parzen kernel: with the

best choice of h , they yield the same estimate (Fig. 2 and 3). Thus

the Parzen kernel is equivalent to the Gaussian kernel. The naive

kernel yields spiky results even with the best choice of h (Figure 4).

However the same basic shape can be distinguished. Note that this

method does not impose any truncation on the data so that the tails

always go to zero.

2.2.2 The Quantile Expansion Method

In Figure 5, the peaks are much sharper and more separated than

in the previous pictures. It is at that order (order 8) that the three

modes appeared for the first time.

(o
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2.2.3 The Spline Method

As in the previous case, the quantile function is smoothly

estimated and then differentiated to produce the density estimator.

The effect of increasing the tension factor tenfold is pictured

in Figure 6 (a = 1.5) and Figure 7 (7 = 15.) . In Figure 8 we show

the estimated quantile function that produced the estimate in Figure 6.

It was based on 8 knot points located at 0., 0.06875, 0.25, 0.4,

0.625, 0.833, 0.916, 1.0

2.2.4 The Weighted Fourier Series Method

We determine first the value v0 which is a kind of upper

bound above which it would be "unsafe" to use the empirical characteris-

2
tic function to estimate Cp(v) . Figure 9 is a plot of logo1 0  pn(v)I

vs. loglo v on a log-log scale. v0  is such that ln(v)I2  oscil-

lates around i/n for v> v 0 . Here n = 63 . Thus we draw a

horizontal line at 1/63 a 0.016 to get that v0 > 9

We notice in Figure 10 that the location of the modes has not

changed. The values of the two extreme modes r• e larger than in

Figure 2 because of the truncation, the data having been rescaled to

fill the interval [-rr,TI completely. The truncation is responsible

too for the behavior at the left tail, which was also heavy in Figure 2.
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Parzen kernel,, h =27.75 Parzen kernel, h 18.5
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2.2.5 The Autoregressive Method.

We include severUl pictures to illustrate the different choices

we could make.

In the first four pictures (Fig. 11, 12, 13 and 14), the data

filled the interval E-rT,rT] . These pictures haqe the same kind of

characteristics as Fig. 10 (e.g., the left tail). The number of modes

is a non-decreasing function of the order.

With the data filling o-ily the central 2/3 of the interval

([-n,1T] , the modes appear much more rapidly (Fig. 15, 16 and 17). The

tails are even, but the modes don't stand in the same relation.

What choice should we make?

Following one of our conclusions of chapter 1, we can look at the

output parameters.
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Table 2.1 Some parameters of the Buffalo snowfall data density
• autoregressive estimator (data rescaled to [-Tr,TT]

Order Coefficients Scale Factor
A A A

m ai. IC.

1 (-0.28R0,0.0792) 0.9107

2 (-0.2943,0.0935) (0.0075,-0.0516) 0.9082

3 (-0.3064,0.0905) (0.0546,-0.1084) 0.8564

4 (-0.3094,0.1081) (0.0554,-0.1174) 0.8517

5 (-0.3160,0.1118) (0.0487,-0.1422) 0.8427

6 (-0.3221,0.0979) (0.0609,-0.1319) 0.8242

9 (-0.4550,0.1386) (0.1570,-0.2222) 0.6769

Table 2.2 Some parameters of the Buffalo snowfall data density
autoregressive estimator

(data rescaled to [-

Order Coefficients Scale Factor
A J%

M am ct2m YM2
1 (-0.5843,0.1321) 0.6410

2 (-0.8359,0.2090) (0.3813,-0.2178) 0.5174

4 (-1.1969,0.2016) (1.0332,-0.3739) 0.3537

8 (-2.0489,0.2873) (2.9781,-0.6858) 0.1011

LC



b After order 4 in Table 2.1, the parameter K decreases byS~m

bigger jumps and the coefficients cim vary more widely from one order

to the next.

In Table 2.2, the behavior is the same as in the similar situation

we encountered in chapter I (Table 1.2). The data did not fill enough

of the interval [-TT,Tr] .

Figure 12 seems to be the best choice. To correct the left tail,

we could contract the data to 90%. of [-,r,TT] with minimal effect on the

modes.

(



2.3 Magaire Data

This set of data was studied by Maguire, Pearson and Wynn (1952).

It consists of "time intervals in days between explosions in mines

involving more than ten men killed, from December 6, 1875 to May 29, 1951."

There are 109 data points and only 93 distinct values (see Table B and

Fig. Bl, B2).

The authors concluded: "none of the tests described in this

paper demonstrates lack of homogeneity in the series of time intervals."

This set was also studied by Boneva, Kendall and Stefanov (1971)

(see Fig. B3).

There were several reasons to consider this set of data, like the

possibility of an exponential underlying distribution and the effect of

the range.

Table B
Maguire Data

378 36 15 31 215 11 137 4 15 72

96 124 50 120 203 176 55 93 59 , 315

59 61 1 13 20 189 345 81 286 114

108 188 233 28 22 61 78 99 326 275

54 217 113 32 23 151 361 312 354 58

275 78 17 1205 644 467 871 48 123 457

498 49 131 182 255 195 224 566 390 72

228 271 208 517 1613 54 326 1312 348 745

217 120 275 20 66 291 4 369 338 336

19 329 330 312 171 145 75 364 37 19

156 47 129 1630 29 217 7 18 1357
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2.3.1 The Kernel Method

The extreme observations have so much effect on the standard

deviation of the sample that we can only obLain a very flat estimate of

the density using the Parzen kernel. But by omitting the nine largest

observations in the computation of the standard deviation, we obtain

Figure 18. Despite the "bias" towards normality exhibited by this

kernel (as noted in section 2.2.1), we recognize the very short left-

hand tail so typical of the exponential density.

2.3.2 The Quantile Expansion Method

It is not possible to get a non-decreasing estimate of the

quantile function, and this implies that one cannot form its functional

inverse which is necessary to get an estimate of the density.

When we consider only the 93 distinct data points, we get an

estimate (Figure 19) which is obviously biased, but nevertheless can be

useful in our comparisons.

!J(
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2.3.3 The Spline 'Method

The spline method proves equally difficult to use on the raw

data. Because of the difference of concentration of the data along the

real line and the necessity to pack all the data on a same graph, we

lose much of our power of resolution. The spline method is also tedious

to use as there is no systematic way of positioning the knots.

After many trials, we did not produce any satisfactory estimate

for mostly the same reason as in the quantile expansion method.

2.3.4 The Weighted Fourier Series Method

In Figure 20 , we notice that the estimate produced by the

weighted Fourier series method has many bumps and is negative at many

points. But the two major bumps are located at about the same place as

in Figure 18.

(
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2.3.5 The Autoregressive Method

First we look at the raw data (Figur.: 21). Notice the large

part of the domain where the estimate is essentially zero: this corres-

ponds to an interval that contains only five isolated points. The two

modes are at about 50 and 320 as in Figure 18. The coefficients in

Table 2.3 sepm to indicate order 4 or 5 (Fig. 21 or 22).

Table 2.3 Some parameters of the Maguire data density
autoregressive estimator

Order Coefficients Scale Factor
SA A

m l ým K

3 (0.7417,-0.7200) (-0.0927,-0.2868) 0.3120

4 (0.7149,-0.7027) (-0.0288,-0.3606) 0.2792"

5 (0.6821,-0.8211) (-0.1105,-0.3999) 0.2391

6 (0.6805,-0.9146) (-0.2540,-0.4430) 0.2245

13 (1.2903,-2.1401) (-1.2134,-3.0118) 0.0152

In the exponential case, we have found that symmetrization yields

good results. In the real data case all we need to do to symmetrize is

to use the real part of the Fourier transform and evaluate the density

on [0,rr] . We notice again that for the same order the symmetrized

estimate is smoother (Fig. 23 vs Fig. 22). This allows us to consider

higher orders (Fig. 25).



-73 -

FIG

Autoregressive method order 4

S~Order 5

t£

,, • ,,- i~ ,,, ,n~ II mua m num lU mlnw nu nan u llU lum ni m md m lU lmu n na m ii • u • la



- 7q"

I Gt

Symmetrized data order 5 order 6

S

TO 00Cwf0 0

F I i25 Fla

(•Order 7 order 8



Table 2.4 Some parameters of the Maguire data density

autoregressive estimator (symmetrized)

Order Coefficients Scale Factor

A A A A A

m aim a2m Kan 5m m

5 -. 7156 -. 2775 .0539 -. 0764 .4251

6 -. 7188 -. 2753 .0424 -. 1061 .4244

7 -. 7200 -. 2723 .0303 -. 0982 .4240

8 -. 7128 -. 2879 .0227 -. 2039 .3973

9 -. 7826 -. 2456 -. 0340 -. 1976 .3666

10 -. 8548 -. 1290 -. 1001 -. 1463 .3419

We notice that the shape changes slowly (Fig. 23, 24, 25 and 26)

from one order to the next as the parameters remain very stable.

But from the big change in the parameters of orders 8 and 9 , it would

seem that order 8 is indicated (Fig. 25).

We then proceed to the square-root transformati..n. The auto-

regressive estimates are much smoother than the one obtained from the

weighted Fourier seric. method (Fig. 27-29 compared to Fig. 20). There

are no bumps in the right-hand tail, which is an improvement over

Figures 24-26. By looking at Table 2.5, we can narrow our choice among

orders 2 to 5 . The shape is pretty much the same, but the location of

"C the modes is moved around.
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Table 2.5 Some parameters of the Maguire data density autoregressive
estimator (square root transformacion)

Order Coefficients Scale Factor

m aim a2m Km

1 (-0.0376,-0.5504) 0.6956

2 (-0.0751,-0.7748) (-0.4011,0.0954) 0.5773

3 (-0.0758,-0.8066) (-0.4605,0.1050) 0.573Z

4 (-0.0784,-0.8073) (-0.4644,0.1214) 0.571..

5 (-0.0750,-0.8092) (-0.4743,0.1206) 0,5662

7 (-0.1020,-0.8337) (-0.4989,0.1606) 0.5361

Figures 21, 25 and 29 have their second mode at about 320

like the kernel estimate in Figure 18 and the quantile estimate of

Figure 19.
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2.4 Bliss Data

This set of data is taken from Bliss (1967) Table 7.1. It con-

sists of a 2 8 -cell histogram for the lengths of survival in days of 1110

mice inoculated uniformly with malaria. This set was also used by

Boneva, Kendall and Stefanov (1971) (see Fig. Cl).

We use it here to compare the behavior of the different methods

;.ith respect to grouped data, i.e., when smoothing a histogram.

Table C
Table CBliss Data

Midpoint 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5

Frequency 25 90 75 69 48 36 29 30 33 44

Midpoint 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5

Frequency 29 40 51 51 71 65 78 75 48 30

Midpoint 24.5 25.5 26.5 27.5 28.5 29.5 30.3 31.5

Frequency 35 17 15 13 4 6 2 1
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2.4.1 The Kernel Method

The kernel method produces once again a smooth estimate (Fig. 30),

with two modes at 7 and 20 . The modes stand in inverse relation com-

pared to Figure Cl . For the used h , there are less points contributing

to the estimation around the first mode than arouna the second. A smaller

value of h would give the proper relation, but it would also give

spurious bumps.

2.4.2 The Quantile Expansion Method

The quantile method cannot be used with grouped data unless one

unravels the histogram by distributing the frequency count of a cell over

its width or by assigning to the midpoint a multiplicity equal to the

frequency count. Using the latter we obtain Figure 31.

2.4.3 The Spline Method

In Figure 32, there is an artificial mode at 4 , outside the

observed range, created by the initial conditions that have to be imposed.

The mode at 7 is still present though obscured. By changing the first

derivative at the origin of the quantile function from 50 to 22 , we

eliminate the artificial mode (Fig. 33) without effect on the second

mode.

TIP,-
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2.4.4 The Weighted Fourier Series Method

There is no difficulty to handle grouped data in the weighted

Fourier series method. But there is always the same problem with the

tails (Figure 34).

2.4.5 The Autoregressive Method

Not to include any zero cell at either end is equivalent to hav-

ing the data fill the interval (-rr,Vr] . From Table 2.6 and the previous

pictures, the estimates of order 2 and 3 seem reasonable (Fig. 35 and

36).

If we include a zero cell at each end, the lata points are con-

tracted to fill only 93% of [-T,¶] ; the pictures differ very slightly

(Fig. 37 and 38), except at the tails as expected.

Table 2.6 Some parameters of the Bliss data density
autoregressive estimator

Order Coefficients Scale Factor
A A A

m alm K
m

1 (-0.1437,-0.0767) 0.9734

2 (-0.1484,-0.1311) (-0.1316,0.3082) 0.8640

3 (-0.2170,-0.1535) (-0.1314,0.3508) 0.6240

4 1-0.2482,-0.1578) (-O.032,0.3769) 0.8064

5 (-0.2629,-0.1641) (-0.0607,0.3927) 0.7967

4I
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2.5 Hazard Estimation

The Maguire data set can also be studied fiom the point oi view

of hazard estimation. It is difficult to judge whether the estimates

produced by the autoregressive method are reasonable. But as there is a

one-to-one relationship between the hazard function and the density

function, we can make the comparison in terms of the density.

Our best estimate of the density was Figure 21 which gives the

hazard function on Figure 39, obtained by the indirect estimation

procedure

A f m (x)
h(x) =

x

l-' fm(u) du
0

Table 2.7 Some parameters of the Maguire data hazard function
autoregressive estimator

Order Coefficients Scale Factor
A A

m m "2m KK

1 (0.4214,-0.2538) 3.5558

2 (0.4873,-0.3144) (0.0511,-0.1748) 3.4378

3 (0.5085,-0.3099) (0.1114,-0.2080) 3.3893

4 (0.4864,-0.3551) (0.0677,-0.2978) 2.7822

5 (0.4262,-0.4846) (-0.0282,-0 3139) 2.7696

(.



A look at Table 2.7 would leave the choice to be made among

orders 2, 3 and 4 (Fig. 40, 41 and 42). From these hazard est -ates,

we can evaluate the density indirectly by

x

f(x) =h m(x) exp(- I h M(u) du)
0

By this process, we obtain Figures 43, 44 and 45.

As Figure 42 is closest to Figure 39, so is Figure IL5 to

Figure 21.

We note that the direct estimation of the hazard function is

difficult at the right-hand tail where it becomes infinite. Also, in

the indirect processes, we have to perform some numerical integration:

we used the trapezoidal rule which should be adequate as long as the

function we integrate does not have too many sharp teeth.

C
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2.6 Estimating the Density via the Quantile Function

There is still another route open to estimate the density

function: via the quantile function.

We use the Fourier transform of the sample quantile function

Qn (t) to get the autoregressive estimate of order m of the sparsity
A A

function, qm(t) . We integrate q%(t) to get Qm(t)

Now using the relation given in (0.A.I.2), the density estimator

is

A 1
f(%(t)) 1

We illustrate it only on the Maguire data, Figures 46 to 49.

The general shape is well preserved (compare with Fig. 21-22). Table 2.8

lists some of the parameters. Orders 2, 3 or 4 seem likely candidates.

Table 2.8 Some parameters of the Maguire data sparsity function
autoregressive estimator

Order Coefficients Scale Factor

A A

m alm KM

1 (0.6615,0.2498) 814.9191

2 (0.3546,0.3447) (-0.4534,-0.0277) 646.7340

3 (0.2663,0.3703) (-0.3986,-0.1115) 620.2509

4 (0.2543,0.3741) (-0.3808,-0.1301) 617.8502

5 (0.2505,0.3790) (-0.3766,-0.1491) 611.7474

6 (0.2254,0.3736) (-0.3687,-0.1701) 571.0632

It
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"2.7 Conclusions

1. We can produce with ease,using the autoregressive method, estimates

that compare favorably with those of the corpeting techniques. We never

get negative estimates as is possible with the quantile method, the

spline method or the weighted Fourier series method.

2. The spline method can be ver-y tedious to use when problems with the

knot points arise.

3. The kernel method performs very well, but the snape of the kernel

has an influence on the shape of the estimate.

4,'.

4. In the autoregressive method, the data should fill at least 90% of

the interval [-Tr,'T]

5. Picking the best order is made easier by looking at the output

parameters. This is another advantage over the weighted Fourier series
A

method. The quantile method also produces output parameters, the i'ts

mention•l in our Introduction. Sillitto (1969) gives interpietation to

some of them.

6. A stricter rule to pick the best order of the autoregressive estima-

tor would be preferable.

7. It seems that transformations of the data can improve the properties

of the autoregressive estimators, notably in the tails.

C



APPEIMIX

2.A.1 Sample Programs for Estimation

We include in this appendix three sample programs, one for each

of the approaches we used.

Each program is divided in 3 parts:

i Computing the estimated R(.) sequence

II Solving the Yule-Walker equations in AUTOREG (see appendix to

Cnhpter 3).

III- Computing the estimate of the density.

1st program: Estimating the density of Maguire data.

In Part I, we pecform the square-root transformation of the data

Y(-) and compute the estimated R(-) sequence in GCSPHI , stored in

A(*) . FREQ(-) contains the frequency of each data point.

In Part II, we solve the Yule-Walker equations. F(-) contains

the estimated density of the square root.

In Part III, we transform back to the original scale.

Subroutine GCSPHI is equivalent to FOURSTI except that it

also computes the square modulus of the R(.) sequence stored in

PH12 . This feature is not needed in the autoregressive method.

2nd program: Estimating the hazard of Maguire data.

( In Part I, CF(e) contains the empirical c.d.f. and F(-)
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contains the first difference of the estimated integrated hazard

log (1 - w-jF~(Io• i -n + I

Part II is as before.

In Part III, we transform back from the hazard to the density.

3rd program: Estimating the quantile of Maguire data.

In Part I, FREQ(-) is the frequency of each data point, CF(e)

is the empirical distribution function. Then, FEQ(o) is modified to

become the first difference of the data Y(-) , i.e., the first differ-

ence of the empirical quantile function.

The two other parts are as before.

in these programs, we always rescale the data to (-rT,TT] using

subroutines CENTER and XSCALE

(I
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PART II - THEORETICAL RESULTS
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Before establishing the practicability of the autoregressive met'od,

we had briefly mentioned in the Introduction two possible interpretations

(namely an orthogona.8 polynomial interpretation and an autoregressive

covariance modeling) to give some insight as to why this method could be

used at all in the estimation of certain functions. We will now develop

these interpretations as they really open the way to the understanding

of the theoretical properties of the method.

Typically the statistical evaluation of an estimation procedure is

the study of irs convergence properties. This can be done quite often

in two parts: first the deterministic part or study of the bias,

second the stochastic part.

Paralleling Part I, we will first answer questions about the bias,

that is: How good is the autczegressive method as an approximAtion

method? Then we will consider the consistency problem so as to complete

the picture of the autoregressive method as an estimation method.

In the process we will try to resolve the unanswered questions with

which we concluded Part I:

- What is the best route to estimate a function?

- Should we transform the data?

- In the case of a density function, should we proceed

directly or via the quantile function, or via the

hazard function?

- How does averaging successive orders help to reduce the bias?

- Can we explain the "odd-even" phenomenon?

(- Why does symmetrizing work better in near exponential situations?
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Note on our numbering system

Let a stand for a chapter,

b for a section of a chapter,

x for a subsection within a section,

y for the rank of an equatior, in a subsection.

All equations will be numbered (x.y) .

For reference purposes, we will use (x.y) when the reference

appears within the same section (a-b) as the equation. Otherwise, we

will use the complete identification (a.b.x.y).

(



CHAPTER 3

INTERPRETATIONS
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3.1 Time series interpretation

3.1.1 Moving average process

Let & be the set of all integers. Let (Y(t),te74 be a

complex-valued stationary time series with covariance function

Ry(v) = ElY(t) - Y(t + v)] .

We say that Y(.) is a moving average process if there exists

an orthogonal process fe(t),teZ3 with

E[e(t)] = 0

2 v, , 2 0R C (v) = E[C(t) * C(t + v)] 7 6a

(where 6 v, is the Kronecker delta function)

such that

(1.1) Y(t) - E Sk e(t - k)

Define the lag operator L by

LJ£(t) = C(t - j)

then, (1.1) can be rewritten as

Y(t) - h(L) C(t)
(1.2)W

where h(L) = Ok
k- -0

.WE W -
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In other words we say that Y(t) is the output of a filter h(L)

with input C(t) . Moreover, we have that

R (v) E ]Rh(s) R (s- v)
S= -W

(1.3)

where Rh(s) = Ok Os+k

Thus,

(1.4) RY(v) = a2

In view of the convolution formula (1.3), it Is useful to consider

in turn the Fourier transform of Ry(.), fy(O) , defined by

1 W -ivx

SfY(x) e RY(v)

We can write it automatically as

fy(N) = fh(x) f C(x)

-ivx ix2
(1.6) where fh(x) ' • e Rh(v) he )1

2

Thus,

I(

p -
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S~2
2ix) 2

(1.7) fy(x) W -h(ei)2

We also have (if Fy(-) is absolutely continuous)

(1.8) R (v) =ST ei dFy(x) = I e 2C fy(x) dx
-TT -TT

Because of (1.8), we call fy(.) the spectral density of the
ixikx

process Y(.) ; h(e ix) - E Oke i s called the transfer function

of the filter h(L) , as it is the link between the time domain represen-

tation (1.2) and the frequency domain representation (1.7).

It is time that we worry a little about the meaning of all those

infinite operations we have been performing.

The process Y(.) has finite variance if and only if
o0 2

S0kl < W , and then (1.1) is defined in mean square. If
k= -w

; l1k0 < 0 , then
--w

2

v=-=. Ik -W

and (1.5) will converge pointwise, a.e.

0O 2

1 00kl < implies E 100k < c
k= -0 k= -=

it turns out that , ,0ki < 0 is a sufficient condition for all our
k= -cc

( operations to be valid.

Ii_ _ _ _ _ _ __ __ _ _ _ _
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We will say that Y(.) has a moving average representation in

terms of the past if Ok = 0 for all k < 0 in (1.1). We will say

that Y(.) has a moving average representation of order q if in addi-

tion Ok ' 0 for k > q and ýq ý 0 in (1.1); usually we normalize by

00 , 1 and use the notation

q
(1.9) Y(t) = e(t) + k; OqE:(t - k)

k=1

3.1.2 Autoregressive process

Let (Y(t),te&] be a complex-valued stationary time series with

covariance function R,(*)

We say that Y(.) is an autoregressive process if there exists a

filter &(L) and an crthogonal process (tT(t),tet

EE I(t)] = 0, PR,(v) E [T((t)T7(t+v)] a2 2>

such that

(2.1) Y(t) = 11(t)
8(L)

where

g(L) - • La a 0( j-0
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We usually write the equivalent formula

(2.2) Y(t) + O= ciY(t - j) = "M(t)

j=l

Note that the filter g(L) does not allow the Yk-) process to depend

on its future, but it is conceivable that h(L) = lfg(L) would allow the

future of the TI(.) process to enter in (2.1). We will guard against

that by asking that the roots of g(z), fr . , be all outside the unit

circle. Then,

1 ~1 
k

-- (2.3) h(L) = g L- L )
TT(l -rjL)

j = r

which provides a moving average representation in terms of the past.

Tt is difficult to express %(.) in terms of the filter h(L)

as in (1.4), but if we post-multiply both sides of equation (2.2) by

Y(t - k) , k = 1,2,3,... , and take expectation of both sides, we obtain

the following linear relations

RY(o) RY(1) R(2) .. " a, R(-l)

(2.4) R.(-I) RY(O) Ry(1) . a .(-2)

RY(-2) Ry(-l) Rc) . % a3€-3•)

uhich are called the Yule-Walker equations. When we post-multiply by

Y(t) and Lake expectation we obtain

V --
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= = 2(2.5) E •j Ry (j) 0- a.0% =
j =0 .

In establishing these foruulas we make use of the fact that

Y(.) has a moving average representation in terms of the past, which

implies that

E[T7(t) Y(t - k)] = 0 for k > 0 , all t

(2.6) 4

E[•I(t) (t] 2

The matrix on the left of (2.4) is an infinite Toeplitz

matrix.

Finally, as in the previous section, the spectral density is

2

(2.7) fy(x) =2 iX)2
Y 2TTjg(e ix

We say that Y(.) is an autoregressive process of cr4$ar p if

aj = 0 for j > p and a / 0 in (2.2). In this case we prefer to use

the following notation:

p
(2.8) Y(t) + E CLpY(t - j) = 71(t)

j=l

The coefficients now satisfy a finite system of Yule-'Talker equations

L(



A .(0) . (p -1) a, R-1)

(2.9) RY(1- p) . %.R(0) 'Pp Ry(-P)

p 2E= a jp Ryj

J=O

More precisely, the covariance function Ry(.) obeys the follow-

ing difference relation

P
(2.10) E ajpRY(j - v) = -lR(-v) for all v > 0

J =1

It is clear that in the finite order case there is no problem in

any of the operations except maybe in (2.9). But there, if Y(.) is

stationary, the covariance function R%(.) is strictly positive definite

and thus the determinant of the finite Toeplitz matrix in (2.9) is greater

than zero (see Pagano (1973) for the real ease). The infinite order case

is treated as the limit of the finite order cases.

W 2
In the following, we shall impose that E -.Ija < to insure

that f 1(.)- is integrable as J=I

42S4TT =p dx
Ri(0) 2- (1l+ j 1f21)=

'InJ -Tr Y(x

where we anticipate (3.2) and Table 3.1.

(



3.1.3 Relations between moving average and autoregressive processes

If we compare (2.7) with (1.7), we see that the spectral densi-

ties of autoregressive and moving average processes are almost inverse

of each other. Let

i2 x 2
f (h(ei )

(3.1)
2 an 1

fr iW 2 l
f1 AR~ 27T jg(e ix)12

Then f (o) is the spectral density of a moving average process having
AR

2 2 -2 -1filter g(L) and with ay = 4T _. Similarly, fM(.) is the spectral

density of an autoregressive process having filter h(L) and with
2 . 4. -2

To any spectral density we associate a new function fi(.) = f-(.)

the inv rae spectral density (we require f- (.) to be integrable, so it

can play the role of a spectral density), and Ri(o) the covinverse func-

tion (or inverse covariance function) related to fi(o) by

(3.2) Ri(v) - f eiVXfi(x) dx
-Tr

We can build the following table of relations:

r --- - l~3- m u--
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3.1.4 General representation of a time series

Let (Y(t),teZ} be a complex-valued stationary time series

with spectral density f(.) and covariance function R(-)

TT
R(v) J IT ev I f(x) dx

Then there exists an orthogonal process Cte(t),teZI such that

Y(t) E O• kett- k)

(4.1)

where k E I <

and f(,) can be represented as

2 1 k 
1 ek e

(4.2) f(x) W 2= k=y - , where f(x) < c
e T

If log f(-) is Lebesgue-integrable (which requires at least

that f(.) be positive and finite almost everywhere on [-t,TT] ), we

have that Ok = 0 for all k < 0 , i.e. Y(.) has a moving average

representation in terms of the past and f(.) is representable by

CO ikX 2

2 k=O
(4.3) f(x) W 2 where 0: f(x)< .

(Doob (1953), p. 577)

(_
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On the other hand, there e'tists a process Y'(.) having covari-

ance function Ri(.) and spectral density fi(.) = fC(.) with

Ri(v) = I e ivx fi(x) dx

Thus there exists an orthogonal process (E'(t),tcZ3 such that

Y'(t) (4 j C. '(t -J)
j ®

(4.4)

cc2where E• lja 1 <

j=

and fi(o) can be represented as

ijx 2

(4.5) Ti(x) = a2, J where fi(x) <C 2• '

As log fi(e) = -log f(e) , we have that a. = 0 for all

j < 0 if log f(.) is Lebesgue-integrable, and then fi(.) is

representable by

(4.6) Ti(x) = 2, J- where 0 fi(x) <

By comparing (4.3) with (4.6), wL conclude that if log f(.)

is Lebesgue-integrable, f(.) can be represented almost everywhere by

either of two forms: - as r moving average spectral density

(



-I•

ikx 2

(4.7) "2 k=O 2
C 2, 1kl2 <"k=O

- as an autoregressive spectral density

(4.8) 4(x) = 2 I 2 O 2" "2 - cc E jC < CD
a *" 211' E 0= aj e i xl J=

3.1.5 Time series interpretation of the 3utoregressive method

We start with a function R(.) that is

(5.1) strictly positive definite

and such that

(5.2) R(-v) = R(v)

It is well-known that such a function is a covariance function.

Then we assa-.e that there exists a function f(.) defined on

(-TT,rT] such that

R(v) J' eiVX f(x) dx
-Tr

(



Furthermore, we assume the existence of a hypothetical complex-

valued stationary time series Y(.) whose covaziance function is R(.)

and spectral density f(.). It is always possible to construct a

Gaussian time series having zero mean and covariance function determined

by R(.) .

Assuming that

(5.3) - D < J log f(x) dx < and < c
-TT _IT

we seek the autoregressive representation of f(.) , f(.)

2

T(x) 1J 0 < 21j 2O CLj eijx] 2 J=

(5.4)J0

w h e e 2 0 5m
where . R(J), according to (2.5)

j=o

Now we know from subsection 3.1.2 that the aL's and the func-

tion R(.) are related via the Yule-Walker equations (2.4). But chat

system is infinite; so we consider successive approximation by finite

orders as in (2.9)

K
fp(X) l - 1

P2TP eiJX 2

(5.5) j. + JP

PK = 1 L 6jP R(J) ' CLOP= 1

P J=O p
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in the hope tnat

(5.6) lim f p(X) = (x)

This is the question we will consider.

(

e ..... ___.... .- fill " . . . . . . . . . . . ..
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3.2 Orthogonal polynomial interpretation

3.2.1 Theory of orthogonal polynomials on the unit circle

Let F(e) be a nondecreasing bounded function with infinitely

many points of increase, defined on (-rr,Tr] . Wý. denote by Ii the

space of measurable complex-valued functions g(.) such that

JTTIg(e ix)2 dF(x) < =

It is well known that 2 with the following inner product

(-),v(- F T= u(e ix) v(e ix) dF(x)

u(.) and v(.) e LF2

is a Hilbert space.

2 2 ,

If we orthagonalize in LF the set of powers fZZ Z,

we obtain a set of polynomials [CP 0(.),eCl(.),Cp 2 (.),...,cp(.),.. that

are uniquely determined by the conditions that

n
(1.1) C (Z) E a jnzn-j ao > 0, for all n

(1.2) (Pj(')'k ('k)) F j Jk for all J and k

In order to construct the polynomial Cp(9) , we define the

( characteristic sequence R(.) by



- 118-

R(v) = 5 e dF(x) V = 0,$ 1, 2,...

Note that R(-v) = R(v) The normal equations (1.2) can be replaced

for Cn(.) by

I p Tn(e i) e-ijxdF(x) = 0 j = 0,l,...,n- 1

(1.3)

which we rewrite as

n

a - C - j) = 0 j = 0,1,...,n-I

(1.4)

aOn ; atnR(-L) =

In matrix form this system is equivalent to

R(O) R(1) . . . R(n) aone al 0

On nn(1.5) •
R(-n+1) R(-n+2) . . . R(l) aOn* aln

R(-n) R(- n+l) . . . RIO an "1O

In view of the multiplicative effect a On has on the cf fi~cients in

(1.5), we can reduce the system by setting aon = 1 arLd then recover

the true value of a0 n via the normalization (CP(.)-pn(O))F = 1F

as follows:



-U'--

--.- 1 - - -- --

R(0) R(1) . . . R(n -1) a nn 1R(n

R(-n+2) R(-n+3) . . . R(l) a R 2)

(1.6) R(-n+1) R(-n+2) ... R0 l

2 1a(. = n 2
aO n n ei(n-J) xI F x

le + ajnF(x)

Thus epn(Z) Zfi + a* + + a a0n > 0
in +nna) , a0  >

Consider now the subspace, of 2 , generated by

0(.),ei(o), ... (.)I and denoted by L2

(CPO ()'P1''n() n

L2 is a reproducing kernel Hilbert space, that is there exists
n

a function K n(.,.) of two complex variables such that

K (.,y) L 2

n n

(1.7)
n

K (-,Y) E k n(y) cPj(.)

(1.8) (g(.),Kn(- y g(y) for all e(.) 2

We can obtain an explicit representation for Kn(.,y) by solving the

followiLg normal equations:

(
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(1.9) (')'Kn(",Y ))F ( y) ,

to yield that

(1.10) KE(eY) = j(y) cPj(.)
J=O

At the same time, we have verified the reproducing property (1.8)

because any g(.) C 2 can be written as

In

g(*) = g jCj
• ]=0

It is clear also that Kn(.,y) is a polynomial of degree n

(for fixed y ). So we may seek its equivalent polynomial representa-

tion

n
(1.11) Kn(Z,y) E a jn(y) Zj

Let hj(Z) = Z, J = 0,,...,n . Then, by (1.8),

(h (-),%n(-,y))F = hj(y) = y , J = 0,l,.,

This can be rewritten as

(



nj1=0 atn (y) R(j 't) =yJ , ,.,

(1.12)
n

E atn(y) R(- ) 1

In particular if we set y = 0 , we get the following system

n

E a n(O) R(j - ') = 0 , j =

(1.13)

E a n(0) R(- t) -

This system is equivalent to (1.4) with the followirg identification:

(1.13) (1.4)

j< > n - j

a n(O) <- > aon * an

n
Thus while Cn(Z) = a jnZ-j , we have that

n
(1.14) K (Z,O) a On E aJ

2 n 2 n 1
(1.15) K (0,0) = ao = I Ij (0) 1 E Iajj

h On J0J0

Let Pn(Z) = K n(ZO)/aon , then

(.(111 •( n""* K n(0,0)
:pn,. t.)F = a2 =i

On

* () = nOO

i iJ n •" pn anaa(m n (1.16) (iipiii.. .. .
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3.2.2 Some interesting properties

A- Extremal properties

The polynomials cpn (Z) and K (Z,O) are also related through

a minimum norm approximation problem. Suppose we want to find the bestn-i

to Zn in the space L2 n-1 Zi such thatapproximation nic uhtan-i ' Z=O I

j=O *

n--Iei~l
I ~n- ;Ii 2 in -i,

izn- n1 c*ZJ2 = Tle "- U c e iX 2 dF(x) is a minimum.
j=o -F' j,0 1

We know that our answer will be the projection of Zn on L2
n-i

n-i
Let g* (Z) =n - 2 c* ZC . We certainly have that

n j=O I
g*( E • (Z) ,and moreover we know that B= - , for the

j=O 0 j aor.
coefficient of Zn is equal to I . It follows that

n 22I~go()Ijl I8n1 2 -
JO a on

Cn(Z) M,(z)
But attains this lower bound. Thus, satisfies all thea On a On

requirements for g (Z) and is our answer. So

a.

Cn- j a On

if IIT le n-1 c e i1j 2 dF(x) is a minimum, the same can
-TT .1=0

be said of the equivalent form

' x 29 n n-l
le le - E c. e j dF(x)

-Tj =0 j

,Ja



or

' -l-- i(n-j) x 2
21 - Ce dF (x)

-IT j=O

Now,

n-lE . n 'in J K n(Z,O)
C - = 1+ T = n

j=O 3 j=l aOn Kn(OO)

In other words, is the projection of Z on L2

K (Z,O) a On n-I

and 1 - is the projection of 1 on the subspace of LKU(o1o) U

generated by LZ,... ,n 3 , Kn(O1 ,) is the squared distance between

Zn and its projection on Ln2
n-I

B - Recurrence relations

Let H be a Hilbert qpac,-, with inner product denoted by

(fhg)R , for f,g in H . We denote by f(.Ig) the projection of f

on the subspace of H generated by g . By analogy with regression

theory, we extend the notion of partial correlation coefficient to the

context of a general Hilbert space: for any elements f,g,fl,...,fn

in H , the generalized partial correlation coefficient between f and

g , given f ''..,fa is defined as

(2.1) r(fgh fl '"n, ) I s - f(tIfl,...,fn)hog- g(.1 f i ... ,fHn).

(. where 11h1lH (h),h)kH is the norm of h in H.

H



Then, for any f, g and h in H , we have that

(2.2) f(.1g,h) = f(. h) + f(.jg - g(.1h))

To prove this, it is sufficient to note that h and g - g(olh) gen-

erate the same subspace as g and h , as they form a basis for that

subspace.

We make two applications of the identity (2.2) to the case of

2n
our Hilbert space LF . We represent Zn by fn , for n = 0,1,2,...

The first application is

(2.3) fn(-If0...,fnl) = f n(.jfl,...,fn l)+fn(.Jf 0 - fo( f ,...,f n-))

which translates into

(2p(Z) Zn (Z) K (Z'O)
(2.4) aZ n a0 ,n-a + Kn_( )

-a
where = = -n is found by equating the constant term on both sides

of (2.4).

The second is

(2.5) f O (.fl,..I.fn) f0(.If1,...,f n-1 +fO(nIfn- fn(.= f 1...,fnU ))

(i which translates into



K (Z,0) Kn-1(Z,0) Z P n-l(Z)
(2.6)1 _ ___ _ 1 +n 1 2. .2Kn(0,0) Kn+ a 0n- 1 1,2,...

a
where a nn is found by equating the cc -ficient of Z on both

a0 n

sides of (2.6).

Thus,

(2.7)n(Z) znl(Z) an K_(Z,)

a On a o,n-1 aOn Kn-1(0,0)

and

K (Z,0) K _(Z,0) ann Z CD n(Z)
(2.8) = +

K (0,0) K _(0,0) aon a
n1 n- On 0,n-1

Moreover, we can give the following interpretation to the
a

coefficient n-
aOn

na '(f0 f , n = n

(2.9) a nn
C -r(f0,f nlfl,...,fn-1) n n 2,3p,...

We use the relation (2.5) in the modified form

(2.10) f = n o).= 1,f,0. 1 ) + 0[f fnfnn.f-,.., 1.)]

together with the basic property of the projection

( (2.11) (f 0 ,fn)H = (f 0 (.If ,...,f n), fn)H

IF



to obtain that

(2.12) (f 0-f0=Il .. I -
(f n" f n(Ifl ''''f n-i) f n)H

The second element f in each inner product can be replaced by
n

f n - fn('1fl''''fn-l) and finally it can be verified directly that

11f 0 - fo0(*If 1,...,f n-l A H = 11fn - f n(.If I,...,fnU-1 )11H•

thus completing the proof of (2.9).

i appendix 3.A.1, we use (2.8) and (2.12) to obtain a recur-

sive algorithm for the computation of Kn(ZO)

C - Asymptotic properties

Theorem 3.1:

1 r Kn(O,O) eik~ x • ek

SK 

2 dx = dF(x) , k - O ,± l ,. .

-Tj IK(e i,O) -Tr

Proof: See Geronimus (1961), p. 12.

In what sense i. this result useful to us?

We know from real analysit' Ohat any monotone function F(.) can

be written as a sum

F(.) ac) + Fs (.)

(
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Q

where - F ac(e) is absolutely continuous with respect to Lebesgue

measure

- Fs () is the sum of a step-function with a singular function

Let f(.) be the derivative of the absolutely continuous part of F(e)

In general, Theorem 1 means that F(x) and
X iG 2 dO have the same first (p + 1) elements in their

-TT IKp(eie,o)j 2

characteristic sequence. In the case F(.) is absolutely continuous,

the Fourier series of the difference

K (0,0)
f(x) - ix 2

JKp (e ,0)

is of the form

- ikxSbke

Ikj>p

Now, what happens in the limit as p -3 m ? We have the follow-

ing theorems that we take again from Geronimus (1961), except

that the notation is changed.

Theorem 3.2:

0 < lin. FK (0'0) = C oD(0°>2 = K(0,0) <
p-+w J=

if and only if log f(.) is Lebesgue-integrable, that is if and only

TT
Iif 5 log (x) dx > I



Proof: See Geronimus (1961), p. 14-17.

Theorem 3.3:

TT Z) im K (Z,O) Ii *M
TTZpr ý'ýKO urnE cpZ (0 CP c ( Z) Z Iz < 1z (K)•p (,0) 1 W "0

if and only if log f(,) is Lebesgue-integrable. The convergence is

uniform in any closed region IZI s r < I

Proof: See Geronimus (1961), Chapter II.

Theorem 3.4:

1 1
S lir 1 exists almost everywhere

(e ix) r- IT 1 (re ix) in [-TT,T.].

Also,

f(1 I

f~x W f •ei)1 a. e. , in [-TT,•T].

27 1 rr(e x)1 2 L1,t

Finally, let E - xe[-YT,T] , 0 < f(x) < c] and define

f((e)) , x x E

0 , i E

Then, 'TE(x) has the following exkansion in terms of the orthogonal



polynomials (Cpn(') n-O I

Go

1 ix

which converges in 2L

Proof: See Geronimus (1961), Chapter II.

Theorem 3.5:

Let

6p = 11TE(') J.p(,O)
ýK(0,0) P

then,

(0,0) ijp+l

and limb =0.
p-40p

Proof: The expansion of TTE(.) in terms of {(') co is, from

Theorem 3.4.

1 c ixTTE(x) ~p ( )-. (e~xVQ•o,o)ý jO J~o •j.

The expansion of Cp%(.) is



1 30-

* (e ix
e4p(e a E CP c(0)cp( )

p a0  J=0

and

pKOO P x ix
.- e(Ose Cpo ~(0) Cpj (e

a ( ,O K K(OO)

o~p p J

Now by Plancherelts theorem

ix ix pi
(er (.) -0 Cppe (e E Cp cp.) Cp.(e FI'TT rK(O) cPP( F -K(.)j F

So,

6P MFiWOO) i P~

And, by Theorem 3.2

urn. 6 =0

Theorem 3.6:

If F(-) is absolutely continuous in [-Tr,TtJ

0 < m : f x)!5 M ,a. e. in (-TT,rrJ and f (.) c Lip(1/2,2) ,then
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iz

l%(z Z , 1

Proof: See Geronimus (1961), Chapter III, Theorem 3.8.

Note: f(o) C Lip (cL,p) if

w (5;f) sup ( f(x+h) - f(x)lP ()

We get the same result as Theorem 3.6 if

R(v) =-J e ivxf(x) dx = O(v)
-TT

Theorem 3.7:
TT

If log F'(x) dx > -P

and F(x 2 ) - F(x 1 ) ?m(x 2 - x) ,for m>0 and -Tr. x, <x 2 :i ,

* ix ix
then lim )(e ) TT(e ), a.e., in [-TrTr .

p-

Proof: See Geronimus (1961), Chapter V, Theorem 5.1

In the case F(e) is absolutely continuous and f(.) is

bounded above and below, it is sufficient to have w2 (6;f) = o0(4') . If

w2 (6;f) = 0(6') , a. > ½ , then the convergence is uniform (Geronlmus

(1961), Theorem 5.2).

(



We can reformulate the assumptions of some of these theorems

in terms of the sequence of partial correlation coefficients fan] by

noting the following results:

Theorem 3.8:

The condition JO nI< 1 , for n = 1.2,..., determines the

entire set of orthogonal polynomials NnP(*)] nj up to a multiplicative

constant (co(o) = 1) and thus determines a function F(.) , bounded"

nondecreasing with infinitely many points of increase.

Proof: See Geronimus (1961), Chapter VIII, Theorem 8.1.

Theorem 3.9:

log f(.) is Lebesgue-integrable if and only if m nx., 2<
n=n

Proof: See Gerenimus (1961), Chapter VIII, Theorem 8.2.

Theorem 3.10:

if IMnnI <n lo3 for n large enough, we have that at

all x where f(x) > 0

1 m p* (eix 7Teix

Proof: See Geronimus (1961), Chapter VIII, Theorem 8.4.
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4 k

Theorem 3.11:

If L nnl < 1 for all n , then

p
C p (Z) a SOp exp( E I CLjJill IZI 1

Proof: See Geronimus (1961), Chapter VIII, Theorem 8.3.

There does not seem to be any condition on the ( n that

would yield the equivalent of Theorem 3.6. Indeed, we have the follow-

ing:

Theorem 3.12:

If E lanni , then
n=1

lp P(Z)l ; C, for IZI ! 1 , and all p

F(.) is absolutely continuous in- [-rr,TT]

f(x) 2 m > 0

f(.) is continuous and

* C

le%,p(Z) - rr(ZI :g C, le. l 1
J=p

Proof: The first assertion is a direct consequence of Theorem 3.11.

(. For the other assertions, see Geronimus (1961), Chapter VIII, Theorem 8.5.

-



So, at the same time as the boundedness of and
P * ix Lo•ex, hs

f•pn(O) , we get the convergence of Q (e ix) to r(e ix This is
lcn 'n=O p

equivalent to the combination of Theorems 3.6 and 3.7 with uniform

convergence.

4,(



3.2.3 Orthogonal polynomial interpretation of the autoregressive

method

If we want to approximate the derivative f(.) of a bounded

nondecreasing finction F(.) , we form the characteristic sequence

R(v) J e7 evdF(x) , v =Ol,.,

-TT

from which we obtain the orthogonal -olynomials (o),g 1 (.).

and the related kernel functions (Ko.,O),oK(.,O),...,K(.,0))

Under the assumption that log f(.) is Lebesgue-integrable, we

have that

1 K (0,0)

p 2Tr ix 2
IKp(e ,0)2

is an approximator of f(x)

In the next chapter, we give more precision to that

affirmation.

The estimation problem would be similar save for the estimation

of the R(.) sequence usually through the use of a crude estimator of

F(-).
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3.3 Correspondences between the two interpretations

The autoregressive approximator of order p

(0.1) f tl) (x)"= K P._E 1
(.)p 2Tr p j2

+ •L. e

and the approximator of order p we obtain from the orthogonal poly-

nomial theory

2 (0,0) K (0,0)
'(0.2) f (x) = P - P

p 2TT JK (eix °)12 2Tr P ijx2
1p~e Jaop ja O ajp

are equal.

Indeed in the time series case, the parameters ICjp1)=l and

K are related by the following equations

pp

= ojpR(j - -L) = -R(-jp) , =

j=l
(0.3)

p
E, ajp R(J) = Kp

(see equation 3.1.2.9)

In the orthogonal polynomial case, we can rewrite the system

(3.2.1.13) as

(.
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E a R(j - a (-.)

(0.4)
p

aOp E a.p R(j) = I

The following identifications provide the equivalence of the

two systems:

a
(0.5) .. -- SaOP

K 1 = _1 _a pa 2 K p (,o)
op

It follows that all the properties that were established in

subsection 3.2.2 have a time series interpretation. We note first that

from the definition of R(.) in both interpretations, we can make the

identification of Y(t - v) with Zv. Then, from subsection 3.2.2

part A, the best (minimum mean-square error) linear predictor of Y(t- p)

given Y(t - p + l),...,Y(t) , denoted by Y(t - pIt - p + l,...,t) is

P -(0.6) Y(t - pit - p 1, ... ,t1 0 - E M YCt- p + D
Jfil JP

and the best linear predictor of Y(t) given Y(t - 1),... Y(t - p) is
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p
(0.7) Y(tjt - l[...,t .' p) = - C. Y(t - D

j=l jp

The recurrence relations of subsection 3.2.2 part B become

Y(t -pIt - P + l,...,'t) = Y(t- pIt - p+l,'...,'t-I1)

(0.8) __p-1

-a E CLppjot~. Y(t - J)

and

4,,.

Y(tI t - ,...,t -p) Y(t t - 1,...,'t- p+l1)

(0.9) p-1

"•- p Cp Y(t - p +j)
PPj J=OJp-i

(-•pp) is the partial correlation coefficient between 11t)
pp

and Y(t-p) given Y(t- l,...,Y(t-p+1) , and by evaluating

(3.2.2.12), we obtain that

p-I p-1E C. R(J - p) E C R(j - p)
(0.10) a 1=0 J1 p-,1 = •J)p-1

pp p-I KpI
j•= o'.p-IR(i)p-

K is the mean-square prediction error when ae usep

Y(tlt- 1....,t- p) to predict Y(t) .

Finally, the theorems of subsection 3.2.2 part C apply directly.

(

1i

--. . .. " n n i m na m mii m n m .m g i - n me



In particular, Theorem 3.1 can be rephrased to say

(0.11) T f ()c) e1kdx = e kdF(x) , I p, •--1,2

11 P -Tr

and Theorem 3.2 implies that

1

(0.12) K decreases to K K( as p -

(

p K(0,0



Appendix

3.A.1 Recursive algorithm

We provide a recursive algorithm to compute

K
fp(X) = -1 0

11 + P e Jx 2
j =1 J

given K p-I and the sequence R(e)give Kp- ( j,p-1 J.l

From (3.3.0.10), which is the equivalent of (3.2.2.12), we have

that

M -p E LZ ' R(j -p)/Kp 1-0

From (3.3.0.9), which is the equivalent of (3.2.2.8), we have

that

(1.2) LJp= aZj,p-I + app a•-,p J

Finally, from (3.1.5.5), we have that

p

(1.3) K = EC. R(J) = 1J=O jp,.O

Using (1.2), we obtain that

(j
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K =K +.CR E
p p- l + . PZ , R (j)

P 2
-- =1 aj,p-IR0 - p)

The initial conditions are simply

(1.4) Ko = R(O) 00

We have written a FORTRAN subroutine that computes f (p)

This subroutine is called AUTOREG and can be found on the next page.

C
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OlPvl'ES THE ..OFFFIC I:'NTS ALPHIA(, AC.)RJrTING TJ
C A ;lECr'jr~VE ll-J&ýJTHMt AN2i Tr4 CuRPESPU'4JINS

c Fjt4CTIO%4 Ft. AT TiHE t- UT INTS SC.
- IN PuT-

-A VCT>'p UF C.OtPLEX FOL~mIER IRA N5FOR?1,
C OF 014ENSION AT LEASr m
C (K-1) IS THE ACIUAL DODER OF TIE SCHEME
C BLI;4i.G :OiPUTFO, KvGE.2

- M :(M"-1) IS !HE I1AXIMUM UKDOER OF St;HEME
c TU 3E. COMPUTED

XVELGT30 Or OAILUES AT WriICH Ffe. la~ TL)
BE :;UMPUIEO, oF DIMENSION NP; -P!*Lr-,x.-E.PI

C : -CFUT-
C ALPHA = EýTOR OF COEFFICIENTS~ DEFINING THE

APPROXIMATINu FUNCTI-jNqHAS T:) BE DIM1EN-
SIrEN7 AT LEAST M rH PRKMIN

F =VtCT3R OF VALUES uFTH PRXMIa
C FUNCTION, OF CIMENSION NP

A-1-HA, DHI, JH, <I ARE USED RECURSIVELY, THAT IS
* THEIR. VtLUZaS AT OUTPUT FO.ý K ART USED AS INPUT

C FOR. (<+i)
C

DIMENSIGN X(iA,FtI)

T40FI=b, 2o.3185.30
Jri=CMPLK (L o ,O.

PHI (L) =1iPLX(l . ta*
IF (Kt0. e-.) KH= CONJ G(W 1))
0) 4 1=1LL

G=-JH/KH
ALPIA (KI=G
IF(L.r.Qe1) GO T3 .5
00 2 I=2,L

2 ALPHA( Il ALFHA CI)4G*FHI(I-1)
3 ONTINUE
00 )~ izltK

3 t'HI(I)=CONJrG'ALPhtiAK~i-I)
rf.H=K.H-JI4'CCNJG (JH)/CO4Ju~(<H)
C&=KH/TWOF I
DO 11 I=A.,9Ni&
G=CMPLXU.- 90.)
0) 12 J=2,K
Fj=J-1

F( I)=:CC/ G-Cj'4j$12,) I
it. CONTINUE( mr-TURtJ
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CHAPTER 4

BIAS STUDY

The Autoregressive Mechod as an Approximation Method

(I



4 1
The properties of the autoregressive approximator f (.) depend

P

in a large measure on the functic=i f(.) being approximated. In this

chapter, we study the effect various hypotheses concerning f(.) have

on the behavior of the bias function

b p(.) = f(.) - f p(.)

especially the rate at which it goes to zero.

In this chapter, we follow Geronimus (1961) closely, except in

Section 4.2.

(



r

4.1 Autoregressive represent..tio

4.1.1 Convergence "in the mean"

We start our study with the case where F(-) is absolutely con-

tinuous and where its derivative f(o) has the following properties

0< J f(x) dx = R(O) <
-IT

(11)0< j' - dx -Ri(O) <f of(x)
TT

-• < f log f(W)dx < log R(O) <

-Tr

Under these conditions, f(.) has the following autoregressive

representation

2
2 1 2 > 0

f(x) = - "C eijx 2 W

11 + 2~E M e 2

and

K I 1 1

fPW 2rt p ijx2 2T-:(.i

Jljp

Also, f W __1 
a.e. (theorem 3.4)

((



Theorem 4.1:

Under the condition (1.1), we have that

1r 1
(1.2) frn W-x)p-• -p

and

(1.3) lUm Tf(x) fV(x) dx =
p- c -IT p

"Proof:

Note first that

- If(x)- fp(x)1

f(x) f xplWIf(x) 0f p W

So (1.2) implies (1.3).

Now,

11 ... L~ 2¶r \ITT(e )I - * ,x ,

Tfx-) f PW =)l

5: 241T iTr(e ix + CD*(e ~ix)j. Irr(ex~) - (eix)1

p l
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Then

1 p -1 f'(Teixl+I ex
' f3 I fXx)j f(x) dx : 217 jy T(e 1 + 11)-TT p(X)-TT

ix *ix-(ei) -P(eX )I * L(x) dx

Using 5chwarz' inequality, we obtain

rr II(!!( l )' ;

-d ,f ~ - • f(x) dx t 2rr Ir(e) + II *(eix)II
- f(x) fp(x) IF F)

'ix *ix.ITT(ei) - p (eCe )

Recall that ' 1•(.)IF f 1 P(eiX)I 2  f(x) dx)

We have shown previously that

Ii~*(eiX), A (3.2.1.16)
Ip F

and by Theorem 3.4

ixi

IhT(ei lF ,, Fj 2/jO K (O,)=

Ilir( ix) - p(eix)IF 10
which cmlt te p->r

(• which completes the proof.



1

Note that (1.2) and all other expressions involving f(.) can be

rewritten using the special notation introduced in subsection 3.1.3,

e.g. for (1.2)

lim raTT Ifi(x) - fiP(x)=
P - cfi(x) TTx = 0

F-*c -TT

Thus the statements about f(.) are not exactly of the same form as the

statements about fi(.)

For our second step we add some conditions to insure that the

*- orthogonal polynomials =0(.)1 are uniformly bounded and so also

the ( *(.)I=

Recall that f(.) C Lip (M,2) if
TIT 2

w2 (6;f) sup If f(x +h) - f(x)I dX = (6•)

f.-68 L _T-1 06

[condition (1.1)

(1.4) 0 < m 5 f(x) W M <- , a.e. in [-TT,nT]

( Lip (1/2,2)

Theorem 4.2:

Under condition (1.4),

(1.5) lim - - dx 0
( 

- -TT f p(X)



ITT f W) - 2.

(1.6) lim fX) dx 0

p-* -TT p p

Proof:

Note first that

1 !f(x)- f(x)I _ If(x) -f W

f(x) f p(X) f(x) fp(X) M fp(X)

and so (1.5) implies (1.6).

Again

1:I2i (I T(e'x)i +cp(e ix I~ reix (
f(x) f(x) " W p -I

But under condition (1.4),

eix 1 f(.) being bounded below

and

le%(eiX)I C by Theorem 3.6

So

T 1 1 2 1 21 1 2

f(x) dx f (x) T f(x)dx

-Tn p -fpTT

< C 0 e rrTeIx, - cp(e •)1 . f(x) dx
"IT TI
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which goes to zero according to Theorem 3.4.

This completes the proof.

A slight modification of condition (1.4) will provide us with

pointwise convergence.

4.1.2 Pointwise convergence

condition (1.1)

0 <m T; f(x) ? M< < a.e. in [-Tr,Trl
(2.1)

f(.) - g(.) , a.e. in [-TrrT]

w2 (6;g) = o(2) , 2<

Theorem 4.3:

Under condition (2.1),

(2.2) limj If(x) - f(X)I dx 0
p-er -rr

and

1 1

(imfp(x) f ± 2 W uniformly
PiTr(e )

1 1(f~) • trix l2 , a.e.) ...........

lr(e ix)1l
Proof:

Under condition (2.1), we certainly have (1.4); but by Lemma 5

. of Ibragimov (1964), {(l ) *is uniformly boaded from above and

I 4



below, i.e. 0 < b r P(eix) B < Thus

0 < a < fp(x) A<a , for all x and all p

and (2.2) follows from (1.6).

To prove (2.3), we note that Theorem 3.7 can be applied so that

* ix ix-
lrm C (e) r(e) , iformly

and by the previous remark (tc('.) * is uniformly bounded from above

and below)

1 1 1 1
-2it p-*=Im * (e i)I2  = x n2 uniformly

This completes the proof.

At what rate does the bias decrease to zero?

condition (1.1)

0 m f <a.e. in [-¶Tr,Tr

(2.4) f(.) = g(.) a.e. in [-TT,rrl

g(.) has r derivatives

8(r)( Lip (cX,2) , 0 < a -• 1

- . - - - --I- ~ , - - -
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Theorem 4.4:

Under condition (2.1),

lbp(x)j = O(p'O) , < - 1/2

Under condition (2.4),

lb p(X)j = O(p"O) , < r += - 1/2•

Proof:

This is essentially Theorem 3.12 in Kromer (1969).

4.1.3 Properties based on the partial correlation coefficients

As in Section 3.2.2, Part C, we can use the partial correlation

coefficients to describe the properties of the bias function. We obtain

results that are similar to those of the two nrevious sections.

Theorem 4.5:

If C lnnl 2< c
n=1

lim ff(x)dx -0
P -1Go-TT f) fP.(x

and

N .. . .... -,t-..• ., .. .. .. .. . .- o,



I " Ir !f(x) - ()

lim f dx = 0P' -TT p(X)

Proof: By Theorem 3.9 < implies that log f(.) is
n=1

Lebesgue-integrable. So we can apply Theorem 4.1.

Theorem 4.6:

If 1 1< 3 for n large enough,
n1 <n n log n

lim fp (x) = f(x) , at all x such that 0 < f(x)

p-

Proof: By Theorem 3.10, we have that

lim cp(ei) = Tr(e) , at all x where f(x) > 0

and so

lim 1

P p*(eix j2 ITeix )12

We can get now different estimates of the bias.

Theorem 4.7:

If l jnnj < , then, F(.) is absolutely continuous
n=l

([..



f (X) k M > 0 x

C1- 1 C* ]Itkkl

f (x) f (x) k kp
P,

Proof:

The first two assertions follow from Theorem 3.12. Then, es in

Theorem 4.2,

1 ii (lIi 1If(x) +fpx) C 2. T +C * ITr(eix) - (e x)I
p j

C C ,k by Theorem 3.12.
k=p

If we add to the hypothesis of Theorem 4.7 that f(.) is bounded

from above, then we can prove that jf(x) - f p( goes to zero uniformly

at the same rate as akk .

- k-p ...

"(.



4.2 Fourier analysis

The Fourier series representation of f(.) is

1I -ivxf(x) - -I E R(v) e-x

and the Fourier series representation of f p. is

f W -ivx
fp( RpR(v) e

where

R(v) ,IVI p

p
(v) -E Rp((v+ J) < -p

Rp(-v) , v > p

Now it is always true that the Fourier series representation of f p(.)

converges pointwise to fp () for almost all x in [-n,Tr] . This

follows from the fact that IR(v)I decreases exponentially (see

Appendix 4.A.1).

If • IR(v)1 2 < c , then f(o) is square-integrable and

1TT
lim f lf(x) - f dx 0( p-*cW -TT
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24

IL jI(v) < • , the Fourier series of f(o) converges

pointwise to f(o) and we can write the bias function exactly as

bpX) -- 1 E (R(v) - R (v)) e-'• a.e.

We obtain the following bound

bW r1 E R(v") + ; ,(v)

And so for almost every x in (-iTrt , the rate of fall-off of bp ()

to zero is the slowest of the rates of convergence of • !R(v)l and

(7 IRp Mi.
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Appendix

4.A.) Rate of fall-off of an autoregressive covariance function.

Suppose (X(t), t C Z] is a stationary autoregressive process of

order p , i.e., there exists an orthogonal process Ce(t), t C Z) such

that

p
X(t) + E a.P X(t-j) = C(t)

then

Y(t) = X(t),X~t-1),...,X(t-p+1

is a Markov process and as such its covariance function is of the form

R!(v) = RY(O) [Py(l)]V

Now

R(v) ... R(v -p +1)

Rv(v) j • , where R(v) = E[X(t) X(t+v)]

v+ p - 1) .. R(v)

and

C
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4

- 1p 1 0 . .. 0

- C2p 0 1 0 ... 0

PO(1) (

- lp-l,p 0 0 1

- Cp 0 0 ... 0

The characteristic polynomial of Py(1) is simply

p _L

which has also been referred to as the indicial polynomial of the con-

stants l,CLip... I . Pagano (1972) has shown that the stationarity

of X(.) implies that all the zeros of i(.) are strictly within the

unit circle.

Thus all the eigenvalues of P (1) have mod.ilus less than I

By using the Jordan canonical decomposition of P y(1) , it is

seen that

lir [Py(l)]v - 0

and by the same token that R(v) goes to zero exponentially.

(
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CHAPTER 5

CONSISTENCY STUDY

The Autoregressive Method as an Estimation Method

(j

Jrt
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In this chapter, we want to establish the consistency of the

autoregressive method and find the rate of consistency in terms of a

relation between the order of the estimator and the sample size.

C



S5.1 Convergence of R(.) to R(.)

The autoregressive estimator of order p depends on the data

through the R(.) subsequence and through the extreme values as the

data is rescaled to [-rr,Tr] . Typically

A ivx ()
R(v) S e dFn (x)

where Fn (x) is usually a step-function and, in many statistical appli-

cations, F (x) is a function of the empirical distribution function.

(Fn(X) , x e [-TT,T]I) is a stochastic process indexed by x . We

assume throughout this chapter that this process has the following

properties:

t(Fn(X) - F(x)) , xe[-TT,TT]] converges to a Gaussian

process with mean 0 and covariance function a(x,y) ,

x,y e [-TT,TT] , where

- F(e) has a derivative f(.) • 0 , integrable
TT

" <- IT log f(x) dx <

IT1 I dx <•

.I- f(X)

- -a<f f T(x,y) dxdy <

- I E[Fn(X)] dx - I F(x) dx
-Tr -TT
T T T r 

T T 'T-f n Cov Fn(X),Fn(y) dxdy I j 5 ((x,y) dxdy
IT TT _nn _ rr

C

,. -. -,.. -.



Theorem 5.1:

Under condition (1.1), for any p 1 1

fRe(R(v) - R(v))

(1.2) -2-> mv sv (v p
\Im (R(v) -R(vl)/, n -,

where

S(v) =B(v

L~v) C(vj

A(v) = A(O) + 2 - (-1)v f v sin vx (o(TE,x) - a(-•Tx) dx

+ S v 2sin v xsin v y a(xy) dxdy
-TT -T

A(O) = (I,TT) + a(-TT,-lT) - 2a(Tr,-rT)

1T
B(v) = (-1)v fI v cos vy (a(-Tr,y) - a(TT,y)) dy

-IT

-- f T v2 sin vx cos vy O(x,y) dxdy
-Tr -T

B(O) = 0

C(v) = f v2 cos vx cos vy a(x,y) dxdy
-T -Tr

C(O) = 0

(The mode of convergence is in distribution.)

W4;



Proof:

p ivx
R(v) T J e dFn(x) , I• p

Using integration by parts, we obtain

(1.3) R(v) (-1)V [Fn (T) - Fn (-TT) Jr iveV Fn (x) dx

Taking expectation of both sides,

Tr

E[R(v)] -- > (-i)v [F(-) - F(-TT) -] ive iVXF(x) dx

n4-4 -TV

which is equal to R(v) as can be seen by integrating by parts again.

For the covariance, we verify the exactitude of B(v) only; the

oLLer terms can be found in the same way.

"n Coy (Re((v) - R(v)) , Im (k(v) - R(v)')

fiE n cos vxd(F n(x) - F(x)) sin vyd Fn(y) - F(y))

Integrating by parts, we obtain

"U E 1)~v(Fn1T) Fn(TT)1 - (-1)v(F,,(-TT) - F(-TT)) + fv sin v W (FUx ~x)x

*{-S••vcosvy[Fn(Y) F(y); dy1 *

-T



It is easy to obtain B(v) from that point.

Finally, as the integral of a Gaussian process is Gaussian, we

obtain the third element of our theorem, i.e., asymptotic normality.

This completes the proof.

it is also clear that R(v) is a consistent estimate of R(v) ,

that is

(1.4) R(v)- _P R(v) , I p , p

This follows from Theorem 5.1 and Chebyshev's inequality.

We can then get a multivariate analogue of Theorem 5.1.

Theorem 5.2:

Under condition (1.1),

ImC()- R(O )~) D I, (,Jk) ~

(V -nM N(
Im(CR(k) - R (k))J

where

(L



E =k [71 Y jc 01

= S~j) defined in Theorem 5.1

r- r

A (-I) i-ItA(O) +(-1) 1 S Tr tsifltcy(j(TT,y) a(1IT,y)) dy
-TT

+(-1)t I T j sin jy(a~lr,y) -a(-rTTy)) dy
-Tr

T ITt+55 it, sin ix sin-ty a(x,y) dxdy
-1T -TT

A = A(0) , as in Theorem 5.1

B = -1 ,j' cos -ty(ay(-TT,y) - o('TT~y)) dy

TI TI

- Cf Jtc sin jx coB t~y a(x,y) dx dy

D (-1/I It -rjcoB jy (j(-TT,y) - cr(rr,y)) dy

-I f t j sin ctx cos jy ay(x,y) dx dy
-TI -TT

Tr TI
it, cos jj Ox cos .0y ar(x,y) dx dy

C =t B a 0

Proot:

The proof is really equivalent to that of Theorem 5.1 and so it is

( omitted.
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We will come back to these formulas in the next chapter when we

examine three different routes to density estimation.

C
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S A

5.2 Consistency of C. and K~-p p

It would be possible without a doubt to carry out the same program

as Kromer (1969). But our main interest lies in relating the order of the

autoregressive estimator to the sample size.

Lemma 5.3:

For any p-dimensional vector x and matrix X (random or not),
'-pp

define

p 211X p !2 = •Ix il

Plx l = su Ix. xi

li1 p11H =- Sur fllx • X p 11
p ix I[=1 P
,,p

Then,

(2.1) 11X :rp p •, < 11 H ix11

lix p 1plH lix < 11 p •r. p max Ixi I , i,j = P}

1i11Pl i p- max ixi I iP)

C



(2.3) If X is Hermitian and Dositive definite, then
P

"ix II Xmax (Xp)

11X111I = 1
p H kin(Xp)

where max (Xp) (Xmin (X p)) is the maximum (minimum) eigenvalue of .p.

(2.4) If Y is non-singular and

Axy y 11 H e > 0

p Hpc
th en, p~~ll H•

Proof:

Most of these assertions are well-known. For (2.4), see Davies

(1973).

Theorem 5.4:

Let f(-) be Integrable and

m : f(x) ý M , a.e. in [-TT,T].

-TT

Le v T i ~)d



Let

R (0) R (p-

R .

R (1-p) R (0) j

Then

(2.5) 2rrm " Xi(Rp) < Xa(Rp) M 1 ° 27
min p) )max p

and

imr )min (R p) = mi 2iT
p-•

(2.6) 
p

Jim X max(Rp) = M. 27

Proof:

See Grenander and Szegb (1958), Chapter 5.

Theorem 5.5:

If 0 < m r f(x) M< , a.e. in [-t,TT] and

Jim p(n) =0

un iL2 coF

thenC
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4 ^

p p(n) p(n)'' - >

(2.7)
A

K p(n) - Kp(n) 2, 0

Note: From now on, we will use p instead of p(n) to simplify the

notation, but with the understanding that p is allowed to increase with

n at the rate specified.

Proof:

Let

•p (Sp' •.,pp

A A A

a = (C
~p = (lp'' ' pp t

r (

-p

_"0 " • . R(p -))

RR1
-p

Rp =

.R(-p) ... R(O)j

AA
R(0) ... R(p-l)

R

R(l-p) ... R(0)]

C

___
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lie then have

(2.8) R_ [(r - r) + (R-R
-P "' P= -PL -P P PI

This is true because the Yule-Walker equations can be written

R C -rp-p '-p

A A A

R M -rp p ýp

A A

11 L CL11 11R-11 11r 1 + 11R R1 -R * IlaH IIl by (2.1).
-p -p p -'p -p p p ý

Now, 11R - Rp1H : p • max(lR(v)- h(v)lI lvi : p]p p1

By Theorem 5.2,

(2.9) IR(v) " R (v)l 0 '--

A

meaning that R(v) converges in probability to R(v) independently of

v at tlie rate of Un as n-

Thus

R p P 11 P

t Now as lim -- = 0 there exists e > 0 such that
nJ



-1 I-l-

_. x (1-e) . (R) by (2.3)
min p

p H

< (1- ) * M. 21 by Theorem 5.4

So, I!RIH 1, by (2.4)

I

x 1 (R) , by (2.3)

E• m" 2r , by Theorem 5.4

Thus,

I l O * e Irp r + 11R - R 11 " 11M 11

$ýp "P [ -p p p -p

11 /P 2 a 12

IIPlpI lmjpl -> A. 12 < by Theorem 3.3
j= p- j=l J

A p

IIp - np " ' maxy R(v) - R(v) , jvj < p3 , by (2.2)

Sby (2.9)

1R -RI = 0 P b-" (2.2) and (2.9)p
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So

a 0

vp ~P n *-o F

For the second part of the theorem,

pA A P

K P- K p Itj)- R()IajP .() ,by

p~ p -- =0p ~~

PA A

Z ((%. (R(j) -R(j)) + R(j) (a. -L .)

j=0 3Pi 
p

P 
A

P p rj0 jP

S(1;i') Cc VPmax[JR(j) -R(j)j IjI -- p

+ ~JRj' + 1C 11RiI ~~

Now, we certainly have

S 1(Y)1 2  ~ 2r
dx 2T

( and so



E IIR(j)1i 1

j =o P j =o

(tR(j)]j3__ is the set of Fourier coefficients of f(-) ). Finally, as

- P - > 0

so, iK - KI -
P PFn

This completes the proof.

The Op(e) notation was introduced by Mann and Waid (1943).

Redefine CL = (•op"''. p and M = (aop,'..,pL ) . Theorem 5.5
'-p op pp -p op pp

A

still holds because = = 1 , and it follows from it thatop op[tp •I >0 , where C% (0,•i,O,2,... , because

% -CII :r. 1 -ai1 + 1aM a-1Ip .. ~p -p ~p

and

p -n2 E (a. - ) eijx - dx, 0, j>p)

~-p - -TTJ-0 1 p

1 ) erijx 2
m- jpe- * f(x) dx

[ " il'r(eiX) - (ixF + J J.Ihq"*(eix)

- > 0 by Theorem 3.4, (3.3.0.12) and (3.2.1.16).p--
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Also, IlK - KuI e 0 , as K -- K by (3.3.0.12).
P p

Berk (1974) also proves the consistency of the autoregressive

coefficients, but his rate of consistency is p /n and he has to make

the further assumption that

• • , 1 2 - 0
J =p+l P

(see his Lemma 3 and equation 2.17).

We only require p2 /n -> 0 . Even though our contexts are different,

our proof can be adapted to Berk's context.

C
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5.3 Consistency of f (-)

From Theorem 5.5, we will now obtain results that parallel those

of Chapter 4.

Lemma 5.6:

312
If 0 < m - f(x) , a.e., in [-TT,TTI and lim 2- = 0

then

A * ix ix
ICP~e -) (e( ) -C-Z 0 o uniformly in x.

Proof:

*ix~ ix ijx ijx
Cp - pe )- P O^ eijX _ 1_ ( e e

1 P " ijx (• Ip) ijx
F= E (0 + (7,--r-EpKp j-O JP J- jp) j=O jp •

p p,

)-C e PP (e I)~ j +Qp
T- +i'c .,P P Kp j

A

p p



7- 7 7 -

As 1Kp- Kpl--P>o , IVY -VK1- ->O

P P

because the reciprocal is a continuou3 function and

0 < < r-K < rZ < , by (3.3.0.12) . Thus

c*(eix) - q*(eX)
1p "p O

This completes the procf.

Theorem 5.7:

If 0 < m < f(x) M 1< a a.e., in [-TT,TT] and
3/2

liim n- 0 ,tian
n-* V

j -- dx ->0
- f P) f) n

Proof:

ITj T IT d-- dx ! f " - 1 dx + r d
-TT f (x) f(x) - f(x) fp(x) fp(X) f(x)

By Theorem 4.1, with the addition that f(.) is essentially

bounded, we have that

S I---II dx - >- 0 .
C I II

JT f p( fW x x -. > OpD

t -l"T !



On the other hand,

M T ___ - dx

4j 1 f(x)
TT (x) fp()

TT ^* ix ix ix ix;!5 2T (cpp(e )I + I Cp?'(eX)) " 1 (eX) - (e f (x) d
-1'1 3p( l * 
") d

TZ T 2 IT i
!9 (I )I 0 f(x) d + (f IP(e )1 • f(x) d)

lpp e x Cp (e )1i 2 2 f(x)

As

I eiX) -ei -- " 0), uniformly in z

jP* (e) Cpp(ex) 12 _-E> 0, uniformly in x

and so

T*Cpix 12P
f TICP*(eix) - (e) * f (x) dx --- > 0

We also have that

1f*(eix"2 • f(x) d - [s •*(eix f(x) dx0 j-2->

because the square function and the integral are continuous transforma-

t tions.
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Fi.no'1y, (YTjlCP(eix * f (x' dx) 1 , by (3.2.1.16)
TT.P

Thus,

3/2)TT 1 1 dx =P Op

^T f ( pW)I

This completes the proof.

Theorem 5.8:

3/2
Under condition (4.1.1.4) and if lim p-- = 0

n - [
then

:l! 12 dx
JT f(x)

Proof:

1'7 12 d_ x__1_-2x+ j1 1 2d
Y f(x) Y-'p(X) fp(X) 1 7(x" 1 dXp

By Theorem 4.2, we have that

1 1 2 d -> 0
SIf ) f(x)

On the other hand,

t

I'



TT ~ 12 d
m.ji f (x) d
-TTjf W )

4r 2 flPe +T ix 3 (e i) 1)2 Ic(e ix (e q)*( 2.iX) dx
-T f Tf 1c ( e I + I DpC p Ip

By Theorem 3.6,

ICP *(eix)l I r C ,independently of x andp

.4. By Lermia 5.6

Op p n(X~ >

that is

cp (e ix = p(e ix) + 0(l) :5 C +o (1)
Ip Ip P p

and

1^~*(ejx) -( 
ixl 0P2_

T~hus,

f 12 2p" :94 12C + *0

-TTEfx) p -Tr

P\ nJ
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This completes the proof.

Theorem 5.9:

Under condition (4.1.2.1) and if

lim 3/2 0/

un 0+c ýn

then

1^--f--- - 2rr• ITT(eix)1 2  P 0 , uniformly
f" •p WX

and

f- - - -K -> 0 , uniformly
I-T(e')1

Proof:

ITTeix)21 e I - -1 + I I .2r. (eix) 2

f(x) f p

By Theorem 4.3,

1 ixr 2 ~( 1 _,> 0 ,uniformly

f. W
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I

On the other hand,

1 1 ^* ix * ix .*( *. ix

f X fpW) < 27( lIp (ex) + P pe )j) ,1 p ( ) e ) l

S2TT(2C + o(1)) • %\3/

as in Theorem 5.8.

Thus,

For the second part of the theorem,

2T -1T~ x 12 f f( fXP + 1f~ -p W TT~e ix)12 1

By Theorem 4.3,

lf -W 0

A

because the reciprocal function is a continuous function and

II
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0 < a f (x) 5 A < c , for all p and all x

This completes the proof.

The rate of consistency that is achieved is of the order of
3

n

I_.



CHAPTER 6

THREE WAYS TO DENSITY ESTIMATION

II
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6.1 The Three Ways and the Basic Assumptions

We assume from the start that we want to approximate the density

of a bounded (1.1) random variable whose range is taken to be [-ii,Tr]

without loss of generality. Note that we can always replace the word

"approximate" by "estimate." Also, we will work on the natural interval

of definition of each function.

The three basic ways to approximate a density are:

- the direct approach: approximate f(-)

- the sparsity approach: approximate q(*) the derivative of the

quantile function and form f(Q(t)) = where

Q(t) = t q(u) du
0

- the hazard approach: approximate h(-) the derivative of
X

(- log (1 - F(e)) and form f(x) = h(x) - exp (- h(u) du)
-Tr

The distribution function F(o) is always a bounded nondecreas-

ing function and, under (1.1), the quantile function Q(-) is also

bounded nondecreasing, but the integrated hazard H(-) is unbounded

though nondecreasing.

Thus H(-) does not really fit in here even though we have

obtained good empirical results in Part I of our research. it is to

be noted that we never attempted to approximate h(*) on the whole

range [-rr,TI] but rather on [-T,Tr-] .

£
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The log-integrability condition can then be expressed in various

ways:

T1{ f log f(x) ax = Sf -q(t) * log q(c) dt
-• 0

1iTT
log q(l dt = f f(x) • log f(x) dx

0 -rr
(1.2) TT- C j- e f(x) d

log h(•) dx = j log dx
-iT -IT

TT_ E1-6
j log h(x) dx = -q(t) • log t((- t) - q(t)) dt
-IT 0

If the interval [-TT,TT] is replaced by (-,=) , then log q(t)

integrable is the weakest assumption. That gives more weight to the

indication that the sparsity approach might be preferred in "tough" sit-

uations as seen in Part I. Another reason to prefer the sparsity

approach is that the sparsity is naturally defined on the bounded inter-

val [0,11 . The only problem is then the unboundedness of the quantile

function, i.e., q(-) will not be integrable. But research has started

to extend the applicability of the autoregressive method in that

direction.

I
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6.2 rhe Empirical Processes

In Section 5.1 we have imposed certain conditions on the empirical

process (Fn(x), xg [-TT,rT]) from which we estimate the R(-) sequence.

We now illustrate what the general formulas look like in the case of

density estimation.

6.2.1 The Direct Approach

In the direct density estimation case, F (x) is the empirical

distribution function. Ii is well known that i'• (Fn(X) - F(x)] con-

verges to a Brownian Bridge process, that is to a Gaussian process with

mean zero and covariance function

(1.1) o(x,y) = F(x) ( - F(y)) , x y

Using the same notation as in Section 5.1, we have for instance that

A(v) = f v 2 sin vx sin vy o(x,y) dxdy
-Tr -IT

(1.2)

B J' ff J sin jx cos ty o(x,y) dxdy

-IT -IT

The other formulas can easily be guessed from those two.

t



-188-

4 *

We can simplify them even more when we carry out the integration:

A(v) Var (cos v X)

Bj(• Cov (cosjX, sin t X)

where X is distributed according to F(.) . Also we find that

(1.4) n Cov (R(j),R(t)) - > R(j - - R(j) R(-4)n-9-o

which can be written as

T ei(J0-)x f(x) dx - iejx f(x) dx * e f(x) dx

-IT -TT -TT

This can be contrasted with results obtained in time series analysis as

in Kromer's dissertation (1969). Let us note first that Kromer was

estimating the spectral density of an observed real time series whereas

we are estimating the spectral density of a complex hypothetical time

series. In his Theorem 3.2, Kromer shows that

(15T ie(j-)x + * f 2 (x) dx

(1.5) n Cov (R(j),R(,)) - > 27 f (e + e ) (x) dx
-TT

where f(-) is the spectral density of the real time series.

£

Ii,



We emphasize that the important difference is not between real

and complex, but between observed and hypothetical. That is the differ-

ence that forces us to use a different type of estimator of the R(-)

sequence.

So our analogy between density estimation and spectral density

estimation breaks down at the point where we evaluate the variance of

the estimators.

6.2.2 The Hazard Approach

In the hazard approach, the empirical process that we have used

is

(2.1) log (I -(x))

where Fn (x) is the empirical distribution function as in 6.2.1.

By using the delta-method, we can find its limiting distribution

to be Gaussian with mean lcg (1 - F(x)) and with covariance function

(2.2) o(x,y) = F(x)hl - F(y)) x S y

(l -F(x) )
2

Note that a(x,y) F(x)I 4?

II
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The form (2.1), though satisfactory in practice, is quite unsuitable for

theoretical study. We need a procedure that will never take us arbi-

trarily close to F(x) = I .

6.2.3 The Sparsity Approach

In the sparsity approach, we use the empirical quantile process

(Qn(t) , 0 ! t 1)i . In the literature on order statistics, we find

that -(Qln(t) - Q(t)) is a Gaussian process with mean 0 and covar-

iance function

(3.1) a(til~t2) tl1(l- t 2).q(tl I q(t 2) 0 :9 t 1-: t 2 I

provided that q(-) is continuous and finite (see for instance Cox

and Hinkley (1974), Appendix 2).

There is no real simplification obtained in trying to carry out

the integration as ii, (1.3). But we can still estimate the variances

and covariances of the R(,) sequence by using an estimator of (3.1)

in formula (5.1.1.2). This last foraula is given on [-7T,TT] so car,.

has to be taken in reformulating (3.1)

(Y~x'Y x+TT)T - x +T,--) 4

II 21T

a1~) ~I \2r

. i i I n nn u m n 1I I 1 .. . .
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6.3 Conclusion

We have started Part II with some questions carried over from

our empirical experience. Can we now provide some answers?

For example, we have uncovered the "odd-even" phenomenon, but we

cannot explain it as such. It does not appear very markedly in estima-

tion problems, probably because the estimators we start with are very

crude.

Symmetrization works very well in the exponential case, but not

so well for the chi-square. One reason could be the effect it has on

the characteristic function.

For an exponential, the characteristic function goes to zero as

1/v , but its real part, which is the characteristic function of the

symmetrized exponential (the Laplace distribution), goes to zero as

2
1/v

For the chi-square with 4 degrees of freedom, the characteristic

function goes to zero as 1/v2 and so does its real part. Thus there

is no real gain in symmetrizing in such situations.

We have accumulatec quite a lot of evidence as to transformations

of data -ith regard to densi'y estimation. The three approaches we

used are not exactly equivaler.t. In Section 6.1, we underlined the

assumptions behind each and, ia Fart I, we stressed the relations

between the approaches and qualitative aspects of the data.t

-1- .
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The best conclusion in practice would be to use the different

approaches on the same data. So far it seems that the quantile approach

is quite robust. We illustrate this statement by pictures of the

exponential and the normal obtained via the quantile approach (see

Fig. I and 2). In Figure 1, we have averaged the exponential approxi-

mators of orders 8 and 9. In Figure 2, we have the normal approxima-

tor of order 9

1~
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